Skip to main content

Advertisement

Log in

Highly Visible Light Active Ternary Polyaniline-TiO2-Fe3O4 Nanotube/Nanorod for Photodegradation of Reactive Black 5 Dyes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A ternary photocatalyst of PANI–TiO2–Fe3O4 with nanorod structure was successfully fabricated by a simple one-pot method via chemical oxidative polymerization using ammonium persulfate as an oxidant under acidic medium. The PANI–TiO2–Fe3O4 (10%) possesses the lowest band gap of 1.50 eV due to the synergistic effect amongst PANI, TiO2, and Fe3O4. The PANI–TiO2–Fe3O4 with 10 wt% of Fe3O4 exhibits the highest photocatalytic activity (k = 0.01589 min−1) for photodegradation of Reactive Black 5 dyes under irradiation of visible light. This is corresponding to the excellent photosensitizer behavior of PANI, good redox property of TiO2 and also high electrical conductivity of Fe3O4. The photocatalytic activity eventually decreased as the amount of Fe3O4 increase up to 20 wt%. This is because the excessive of Fe3O4 distorts the elongation of nanorod which reduces the surface active catalytic site for RB5. In summary, the nanorod structure of PANI–TiO2–Fe3O4 photocatalyst has dramatic effects in enhancing the photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Islam, M. Mostafa, Textile dyeing effluents and environment concerns - a review. J. Environ. Sci. Nat. Resour. 11(1–2), 131–144 (2019). https://doi.org/10.3329/jesnr.v11i1-2.43380

    Article  Google Scholar 

  2. M.R. Jalali Sarvestani, Z. Doroudi, Removal of reactive black 5 from waste waters by adsorption: a comprehensive review. J. Water Environ. Nanotechnol. 5(2), 180–190 (2020). https://doi.org/10.22090/jwent.2020.02.008

    Article  CAS  Google Scholar 

  3. C. Soo, J. Juan, C. Lai, S. Hamid, R. Yusop, Fe-doped mesoporous anatase-brookite titania in the solar-light-induced photodegradation of Reactive Black 5 dye. J. Taiwan Inst. Chem. Eng. 68, 153–161 (2016). https://doi.org/10.1016/j.jtice.2016.08.025

    Article  CAS  Google Scholar 

  4. R. Al-Tohamy, J. Sun, M. Fareed, E. Kenawy, S. Ali, Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-69304-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han et al., Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv. 5(19), 14610–14630 (2015). https://doi.org/10.1039/c4ra13734e

    Article  CAS  Google Scholar 

  6. S. Foorginezhad, M. Zerafat, Microfiltration of cationic dyes using nano-clay membranes. Ceram. Int. 43(17), 15146–15159 (2017). https://doi.org/10.1016/j.ceramint.2017.08.045

    Article  CAS  Google Scholar 

  7. S. Shahabuddin, N. Sarih, F. Ismail, M. Shahid, N. Huang, Synthesis of chitosan grafted-polyaniline/Co3O4 nanocube nanocomposites and their photocatalytic activity toward methylene blue dye degradation. RSC Adv. 5(102), 83857–83867 (2015). https://doi.org/10.1039/c5ra11237k

    Article  CAS  Google Scholar 

  8. P. Xiong, L. Wang, X. Sun, B. Xu, X. Wang, Ternary titania-cobalt ferrite–polyaniline nanocomposite: a magnetically recyclable hybrid for adsorption and photodegradation of dyes under visible light. Ind. Eng. Chem. Res. 52(30), 10105–10113 (2013). https://doi.org/10.1021/ie400739e

    Article  CAS  Google Scholar 

  9. M. Pawar, S. Topcu Sendoğdular, P. Gouma, A brief overview of TiO2 photocatalyst for organic dye remediation: case study of reaction mechanisms involved in Ce-TiO2 photocatalysts system. J. Nanomater. 2018, 1–13 (2018). https://doi.org/10.1155/2018/5953609

    Article  CAS  Google Scholar 

  10. Z. Che Ramli, N. Asim, W. Isahak, Z. Emdadi, N. Ahmad-Ludin, M. Yarmo, K. Sopian, Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2. Sci. World J. 2014, 1–8 (2014). https://doi.org/10.1155/2014/415136

    Article  CAS  Google Scholar 

  11. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52(10), 3581–3599 (2013). https://doi.org/10.1021/ie303468t

    Article  CAS  Google Scholar 

  12. A. Abdullah, M. Garcia-Pinilla, S. Pillai, K. O’Shea, UV and visible light-driven production of hydroxyl radicals by reduced forms of N, F, and P codoped titanium dioxide. Molecules 24(11), 2147 (2019). https://doi.org/10.3390/molecules24112147

    Article  CAS  PubMed Central  Google Scholar 

  13. X. Cheng, X. Yu, Z. Xing, J. Wan, Enhanced photocatalytic activity of nitrogen doped TiO2 anatase nano-particle under simulated sunlight irradiation. Energy Proc. 16, 598–605 (2012). https://doi.org/10.1016/j.egypro.2012.01.096

    Article  CAS  Google Scholar 

  14. C. Kim, B. Kim, K. Yang, TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50(7), 2472–2481 (2012). https://doi.org/10.1016/j.carbon.2012.01.069

    Article  CAS  Google Scholar 

  15. M. Khairy, W. Zakaria, Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt. J. Pet. 23(4), 419–426 (2014). https://doi.org/10.1016/j.ejpe.2014.09.010

    Article  Google Scholar 

  16. M. Szkoda, K. Siuzdak, A. Lisowska-Oleksiak, Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water. Physica E 84, 141–145 (2016). https://doi.org/10.1016/j.physe.2016.06.004

    Article  CAS  Google Scholar 

  17. J. Miao, A. Xie, S. Li, F. Huang, J. Cao, Y. Shen, A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red. Appl. Surf. Sci. 360, 594–600 (2016). https://doi.org/10.1016/j.apsusc.2015.11.005

    Article  CAS  Google Scholar 

  18. M. Sun, Y. Wang, Y. Fang, S. Sun, Z. Yu, Construction of MoS2/CdS/TiO2 ternary composites with enhanced photocatalytic activity and stability. J. Alloys Compd. 684, 335–341 (2016). https://doi.org/10.1016/j.jallcom.2016.05.189

    Article  CAS  Google Scholar 

  19. X. Zhang, J. Wu, G. Meng, X. Guo, C. Liu, Z. Liu, One-step synthesis of novel PANI–Fe3O4@ZnO core–shell microspheres: an efficient photocatalyst under visible light irradiation. Appl. Surf. Sci. 366, 486–493 (2016). https://doi.org/10.1016/j.apsusc.2016.01.137

    Article  CAS  Google Scholar 

  20. W. Li, Y. Tian, C. Zhao, Q. Zhang, W. Geng, Synthesis of magnetically separable Fe3O4@PANI/2 photocatalyst with fast charge migration for photodegradation of EDTA under visible-light irradiation. Chem. Eng. J. 303, 282–291 (2016). https://doi.org/10.1016/j.cej.2016.06.022

    Article  CAS  Google Scholar 

  21. Y. N. Koh, K. Sambasevam, R. Yahya, S. W. Phang, Improvement of microwave absorption for PAni/HA/TiO2/Fe3O4 nanocomposite after chemical treatment. Polym. Compos. 34(7), 1186–1194 (2013). https://doi.org/10.1002/pc.22528

    Article  CAS  Google Scholar 

  22. A. Maleki, H. Movahed, P. Ravaghi, T. Kari, Facile in situ synthesis and characterization of a novel PANI/Fe3O4/Ag nanocomposite and investigation of catalytic applications. RSC Adv. 6(101), 98777–98787 (2016). https://doi.org/10.1039/c6ra18185f

    Article  CAS  Google Scholar 

  23. I. Steblevskaya, M. Medkov, M. Belobeletskaya, Preparation of nanosized terbium-manganese mixed oxides by extract pyrolysis. Theor. Found. Chem. Eng. 44(4), 517–520 (2010). https://doi.org/10.1134/s0040579510040287

    Article  CAS  Google Scholar 

  24. P. Boruah, B. Sharma, I. Karbhal, M. Shelke, M. Das, Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. J. Hazard. Mater. 325, 90–100 (2017). https://doi.org/10.1016/j.jhazmat.2016.11.023

    Article  CAS  PubMed  Google Scholar 

  25. Y. Gong, H. Yu, X. Quan, Origin of visible light photocatalytic activity of Ag3AsO4 from first-principles calculation. Int. J. Photoenergy 2014, 1–5 (2014). https://doi.org/10.1155/2014/639509

    Article  CAS  Google Scholar 

  26. V. Milichko, A. Nechaev, V. Valtsifer, V. Strelnikov, Y. Kulchin, V. Dzyuba, Photo-induced electric polarizability of Fe3O4 nanoparticles in weak optical fields. Nanoscale Res. Lett. (2013). https://doi.org/10.1186/1556-276x-8-317

    Article  PubMed  PubMed Central  Google Scholar 

  27. Z. Li, H. Wang, L. Zi, J. Zhang, Y. Zhang, Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation. Ceram. Int. 41(9), 10634–10643 (2015). https://doi.org/10.1016/j.ceramint.2015.04.163

    Article  CAS  Google Scholar 

  28. V. Loryuenyong, N. Jarunsak, T. Chuangchai, A. Buasri, The Photocatalytic reduction of hexavalent chromium by controllable mesoporous anatase TiO2 nanoparticles. Adv. Mater. Sci. Eng. 2014, 1–8 (2014). https://doi.org/10.1155/2014/348427

    Article  CAS  Google Scholar 

  29. S. Sarmah, A. Kumar, Photocatalytic activity of polyaniline-TiO2 nanocomposites. Indian J. Phys. 85(5), 713–726 (2011). https://doi.org/10.1007/s12648-011-0071-1

    Article  CAS  Google Scholar 

  30. D. Zhang, H. Chen, R. Hong, Preparation and conductive and electromagnetic properties of Fe3O4/PANI nanocomposite via reverse in situ polymerization. J. Nanomater. 2019, 1–9 (2019). https://doi.org/10.1155/2019/7962754

    Article  CAS  Google Scholar 

  31. M. Ghazanfari, M. Kashefi, S. Shams, M. Jaafari, Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem. Res. Int. 2016, 1–32 (2016). https://doi.org/10.1155/2016/7840161

    Article  CAS  Google Scholar 

  32. S. W. Phang, N. Kuramoto, Microwave absorption property of polyaniline nanocomposites containing TiO2 and Fe3O4 nanoparticles after FeCl36H2O treatment. Polym. Compos. 31(3), 516–523 (2010). https://doi.org/10.1002/pc.20838

    Article  CAS  Google Scholar 

  33. D. Huyen, N. Tung, N. Thien, L. Thanh, Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors 11(2), 1924–1931 (2011). https://doi.org/10.3390/s110201924

    Article  CAS  Google Scholar 

  34. L. Zhou, C. Li, X. Liu, Y. Zhu, Y. Wu, T. van Ree, Metal oxides in supercapacitors. Met. Oxides Energy Technol. (2018). https://doi.org/10.1016/b978-0-12-811167-3.00007-9

    Article  Google Scholar 

  35. J. Hao, W. Zhao, H. Zhang, D. Wang, Q. Yang, N. Tang, X. Wang, Controlled synthesis of PANI nanostructures using phenol and hydroquinone as morphology-control agent. Polym. Bull. 75(6), 2575–2585 (2017). https://doi.org/10.1007/s00289-017-2159-z

    Article  CAS  Google Scholar 

  36. S. Shahabuddin, N. Muhamad Sarih, S. Mohamad, J. Joon Ching, SrTiO3 nanocube-doped polyaniline nanocomposites with enhanced photocatalytic degradation of methylene blue under visible light. Polymers 8(2), 27 (2016). https://doi.org/10.3390/polym8020027

    Article  CAS  PubMed Central  Google Scholar 

  37. H. Wu, S. Lin, C. Chen, W. Liang, X. Liu, H. Yang, A new ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Mater. Res. Bull. 83, 434–441 (2016). https://doi.org/10.1016/j.materresbull.2016.06.036

    Article  CAS  Google Scholar 

  38. K. Pandiselvi, H. Fang, X. Huang, J. Wang, X. Xu, T. Li, Constructing a novel carbon nitride/polyaniline/ZnO ternary heterostructure with enhanced photocatalytic performance using exfoliated carbon nitride nanosheets as supports. J. Hazard. Mater. 314, 67–77 (2016). https://doi.org/10.1016/j.jhazmat.2016.04.035

    Article  CAS  PubMed  Google Scholar 

  39. H. Ali, Facile synthesis of mesoporous TiO2-CdS-polyaniline ternary system with improved optical properties. Mater. Res. Express 6(11), 115529 (2019). https://doi.org/10.1088/2053-1591/ab4acf

    Article  Google Scholar 

  40. J. Zhang, H. Bi, G. He, Y. Zhou, H. Chen, Fabrication of Ag3PO4−PANI−GO composites with high visible light photocatalytic performance and stability. J. Environ. Chem. Eng. 2(2), 952–957 (2014). https://doi.org/10.1016/j.jece.2014.03.011

    Article  CAS  Google Scholar 

  41. X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, C. Li, Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system. Sci. Rep. (2015). https://doi.org/10.1038/srep10632

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Tunku Abdul Rahman University College, University of Malaya, research grants including FRGS (FRGS/1/2019/STG01/TARUC/02/1) and the Ministry of Higher Education Malaysia (MOHE) for their financial support to complete this research study.

Funding

This study was funded by FRGS/1/2019/STG01/TARUC/02/1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joon-Ching Juan or Sook-Wai Phang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jumat, N.A., Khor, SH., Basirun, W.J. et al. Highly Visible Light Active Ternary Polyaniline-TiO2-Fe3O4 Nanotube/Nanorod for Photodegradation of Reactive Black 5 Dyes. J Inorg Organomet Polym 31, 2168–2181 (2021). https://doi.org/10.1007/s10904-021-01912-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01912-7

Keywords

Navigation