Skip to main content

Advertisement

Log in

Ultrathin Au–Ag Heterojunctions on Nanoarchitectonics Based Biomimetic Substrates for Dip Catalysis

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanoarchitectonics has gained recent attention from researchers and can be utilized in the development of catalytic systems with unique morphological features, high surface area and engineered catalytic sites. In this work, biomimetic substrates have been fabricated by replicating wings of a grasshopper insect with interesting surface hierarchical architecture by employing a soft lithography technique. Further, the substrates were engineered to form a hetero-nanojunction of gold and silver nanolayers by using the sputtering technique. The replicated substrates possess multi-wall supported sharp edged pods type morphology and provide a good degree of adhesion to the deposited metal layers with increased surface area in comparison to a flat control substrate. The catalytic potential of these metal-coated nanoarchitectonics-based substrates was examined as dip catalysts for degradation of a model organic pollutant, methylene blue in the presence of sodium borohydride as a reducing agent. The biomimetic substrate showed higher photocatalytic degradation of methylene blue due to the enhanced plasmonic effect in comparison to the flat control substrate. The mechanism of the degradation has been discussed in detail in the presence and absence of light irradiation. This work paves way for the design and development of recyclable and efficient dip catalysis substrates by combining the nanoarchitectonics and biomimetic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Scheme 3

Similar content being viewed by others

References

  1. A. Hoque, M. Mohiuddin, Z. Su, Effects of industrial operations on socio-environmental and public health degradation: evidence from a least developing country (LDC). Sustainability 10, 3948 (2018)

    Google Scholar 

  2. A. Kumar, A. Kumar, V. Krishnan, Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal. 10, 10253–10315 (2020)

    CAS  Google Scholar 

  3. R. Saxena, M. Saxena, A. Lochab, Recent progress in nanomaterials for adsorptive removal of organic contaminants from wastewater. ChemistrySelect 5, 335–353 (2020)

    CAS  Google Scholar 

  4. D. Bhatia, N.R. Sharma, R. Kanwar, J. Singh, Physicochemical assessment of industrial textile effluents of Punjab (India). Appl. Water Sci. 8, 83 (2018)

    Google Scholar 

  5. L. Hu, D. Luo, L. Wang, M. Yu, S. Zhao, Y. Wang, S. Mei, G. Zhang, Levels and profiles of persistent organic pollutants in breast milk in China and their potential health risks to breastfed infants: a review. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.142028

    Article  PubMed  PubMed Central  Google Scholar 

  6. H. Wang, J.-R. Zhang, X.-F. Wu, C. Wang, Y. Li, L.-J. Ci, Y.-N. Jia, T.-L. Chang, X.-T. Liu, Y.-X. Fu, Study on Ag2WO4/g-C3N4 nanotubes as an efficient photocatalyst for degradation of Rhodamine B. J. Inorg. Organomet. Polym. Mater. 30(12), 1–11 (2020)

    Google Scholar 

  7. B. Ulum, S. Ilyas, A.N. Fahri, I. Mutmainna, M.A. Anugrah, N. Yudasari, E.B. Demmalino, D. Tahir, Composite carbon-lignin/zinc oxide nanocrystalline ball-like hexagonal mediated from Jatropha curcas L. leaf as photocatalyst for industrial dye degradation. J. Inorg. Organomet. Polym. Mater. 30(11), 1–12 (2020)

    Google Scholar 

  8. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006)

    CAS  PubMed  Google Scholar 

  9. V. Sharma, A. Bahuguna, V. Krishnan, Bioinspired dip catalysts for Suzuki–Miyaura cross-coupling reactions: effect of scaffold architecture on the performance of the catalyst. Adv. Mater. Interfaces 4, 1700604 (2017)

    Google Scholar 

  10. D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 7852–7872 (2005)

    CAS  Google Scholar 

  11. J.M. Thomas, W.J. Thomas, Principles and Practice of Heterogeneous Catalysis (Wiley, Weinheim, 2014).

    Google Scholar 

  12. Q.-L. Zhu, F.-Z. Song, Q.-J. Wang, N. Tsumori, Y. Himeda, T. Autrey, Q. Xu, A solvent-switched in situ confinement approach for immobilizing highly-active ultrafine palladium nanoparticles: boosting catalytic hydrogen evolution. J. Mater. Chem. A 6, 5544–5549 (2018)

    CAS  Google Scholar 

  13. Q.M. Kainz, O. Reiser, Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. Acc. Chem. Res. 47, 667–677 (2014)

    CAS  PubMed  Google Scholar 

  14. A.K. Ilunga, R. Meijboom, Random alloy nanoparticles of Pd and Au immobilized on reducible metal oxides and their catalytic investigation. Appl. Catal. B 203, 505–514 (2017)

    CAS  Google Scholar 

  15. L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. V. Melinte, L. Stroea, T. Buruiana, A.L. Chibac, Photocrosslinked hybrid composites with Ag, Au or Au–Ag NPs as visible-light triggered photocatalysts for degradation/reduction of aromatic nitro derivatives. Eur. Polym. J. 121, 109289 (2019)

    CAS  Google Scholar 

  17. U.D. Madhuri, J. Saha, T. Radhakrishnan, ‘Dip Catalysts’ based on polymer–metal nanocomposite thin films: combining soft-chemical fabrication with efficient application and monitoring. ChemNanoMat 4, 1191–1201 (2018)

    CAS  Google Scholar 

  18. E. Hariprasad, T. Radhakrishnan, A highly efficient and extensively reusable “Dip Catalyst” based on a silver-nanoparticle-embedded polymer thin film. Chem. Eur. J. 16, 14378–14384 (2010)

    CAS  PubMed  Google Scholar 

  19. H. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J. Zhu, G. Henriksson, M.E. Himmel, L. Hu, Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374 (2016)

    CAS  PubMed  Google Scholar 

  20. K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K.C.-W. Wu, J.P. Hill, Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem. Lett. 43, 36–68 (2014)

    CAS  Google Scholar 

  21. G. Chen, F. Sciortino, K. Ariga, Atomic nanoarchitectonics for catalysis. Adv. Mater. Interfaces (2020). https://doi.org/10.1002/admi.202001395

    Article  Google Scholar 

  22. S. Mandal, M. Sathish, G. Saravanan, K. Datta, Q. Ji, J.P. Hill, H. Abe, I. Honma, K. Ariga, Open-mouthed metallic microcapsules: exploring performance improvements at agglomeration-free interiors. J. Am. Chem. Soc. 132, 14415–14417 (2010)

    CAS  PubMed  Google Scholar 

  23. K. Ariga, Y. Yamauchi, Nanoarchitectonics from atom to life. Chem. Asian J. 15, 718–728 (2020)

    CAS  Google Scholar 

  24. V. Sharma, S. Kumar, A. Bahuguna, D. Gambhir, P.S. Sagara, V. Krishnan, Plant leaves as natural green scaffolds for palladium catalyzed Suzuki–Miyaura coupling reactions. Bioinspir. Biomim. 12, 016010 (2016)

    PubMed  Google Scholar 

  25. N. Kumari, N. Sood, V. Krishnan, Beetle wing inspired fabrication of nanojunction based biomimetic SERS substrates for sensitive detection of analytes. Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1816382

    Article  Google Scholar 

  26. S.W. Lee, C. Lee, K.C. Goddeti, S.M. Kim, J.Y. Park, Surface plasmon-driven catalytic reactions on a patterned Co3O4/Au inverse catalyst. RSC Adv. 7, 56073–56080 (2017)

    CAS  Google Scholar 

  27. K.K. Haldar, S. Kundu, A. Patra, Core-size-dependent catalytic properties of bimetallic Au/Ag core–shell nanoparticles. ACS Appl. Mater. Interfaces 6, 21946–21953 (2014)

    CAS  PubMed  Google Scholar 

  28. S. Biran Ay, N. Kosku Perkgoz, Nanotechnological advances in catalytic thin films for green large-area surfaces. J. Nanomater. (2015). https://doi.org/10.1155/2015/257547

    Article  Google Scholar 

  29. K. Ariga, Nanoarchitectonics: bottom-up creation of functional materials and systems. Beilstein J. Nanotechnol. 11, 450–452 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. V. Malgras, Q. Ji, Y. Kamachi, T. Mori, F.-K. Shieh, K.C.-W. Wu, K. Ariga, Y. Yamauchi, Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn 88, 1171–1200 (2015)

    CAS  Google Scholar 

  31. M. Yilmaz, G.B. Demirel, G. Demirel, Silver thin film deposited 3-dimensional gold nanorod arrays for plasmonic catalysis. J. Vac. Sci. Technol. A 38, 023407 (2020)

    CAS  Google Scholar 

  32. J. Wang, R.A. Ando, P.H. Camargo, Investigating the plasmon-mediated catalytic activity of AgAu nanoparticles as a function of composition: are two metals better than one? ACS Catal. 4, 3815–3819 (2014)

    CAS  Google Scholar 

  33. K. Zhang, J.M. Suh, J.-W. Choi, H.W. Jang, M. Shokouhimehr, R.S. Varma, Recent advances in the nanocatalyst-assisted NaBH4 reduction of nitroaromatics in water. ACS Omega 4, 483–495 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. S. Kundu, A. Patra, Nanoscale strategies for light harvesting. Chem. Rev. 117, 712–757 (2017)

    CAS  PubMed  Google Scholar 

  35. A. Kumar, S. Kumar, A. Bahuguna, A. Kumar, V. Sharma, V. Krishnan, Recyclable, bifunctional composites of perovskite type N-CaTiO3 and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Mater. Chem. Front. 1, 2391–2404 (2017)

    CAS  Google Scholar 

  36. A. Kumar, V. Navakoteswara Rao, A. Kumar, M. Venkatakrishnan Shankar, V. Krishnan, Interplay between mesocrystals of CaTiO3 and edge sulfur atom enriched MoS2 on reduced graphene oxide nanosheets (enhanced photocatalytic performance under sunlight irradiation). ChemPhotoChem (2020). https://doi.org/10.1002/cptc.201900267

    Article  Google Scholar 

  37. A. Kumar, C. Schuerings, S. Kumar, A. Kumar, V. Krishnan, Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation. Beilstein J. Nanotechnol. 9, 671–685 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Singh, A. Kumar, V. Krishnan, Influence of different bismuth oxyhalides on the photocatalytic activity of graphitic carbon nitride: a comparative study under natural sunlight. Mater. Adv. 1, 1262–1272 (2020)

    CAS  Google Scholar 

  39. C. Acikgoz, M.A. Hempenius, J. Huskens, G.J. Vancso, Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur. Polym. J. 47, 2033–2052 (2011)

    CAS  Google Scholar 

  40. H. Surapaneni, S. Attili, Polyvinyl siloxanes in dentistry: an overview. Trends Biomater. Artif. Organs 27(3), 115–123 (2013)

    Google Scholar 

  41. P. Moy, F. Karasz, The interactions of water with epoxy resins. Water Polym. 27, 505–513 (1980)

    Google Scholar 

  42. E. Cattaruzza, G. Battaglin, P. Canton, C. Sada, Some structural and optical properties of copper and copper oxide nanoparticles in silica films formed by co-deposition of copper and silica. J. Non-cryst. Solids 351, 1932–1936 (2005)

    CAS  Google Scholar 

  43. P. Sangpour, O. Akhavan, A.Z. Moshfegh, RF reactive co-sputtered Au–Ag alloy nanoparticles in SiO2 thin films. Appl. Surf. Sci. 253, 7438–7442 (2007)

    CAS  Google Scholar 

  44. M. Sakir, M.S. Onses, Solid substrates decorated with Ag nanostructures for the catalytic degradation of methyl orange. Results Phys. 12, 1133–1141 (2019)

    Google Scholar 

  45. M.I. Din, R. Khalid, Z. Hussain, T. Hussain, A. Mujahid, J. Najeeb, F. Izhar, Nanocatalytic assemblies for catalytic reduction of nitrophenols: a critical review. Crit. Rev. Anal. Chem. 50, 322–338 (2020)

    CAS  PubMed  Google Scholar 

  46. S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumar, S.T. Kumar, M. Rao, Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. J. Bioremediat. Biodegrad. 6, 1 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Advanced Materials Research Center (AMRC), IIT Mandi for laboratory and characterization facilities. We also thank Dr. Vishav Gaurav Singh Chandel from Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh for identification of grasshopper species. NK and AK acknowledge senior research fellowship from Indian Council of Medical Research (ICMR) and Council of Scientific and Industrial Research (CSIR), Government of India, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Krishnan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Kumar, A. & Krishnan, V. Ultrathin Au–Ag Heterojunctions on Nanoarchitectonics Based Biomimetic Substrates for Dip Catalysis. J Inorg Organomet Polym 31, 1954–1966 (2021). https://doi.org/10.1007/s10904-021-01902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01902-9

Keywords

Navigation