Skip to main content
Log in

Incorporation of 5-Nitroisatin for Tailored Hydroxyapatite Nanorods and its Effect on Cervical Cancer Cells: A Nanoarchitectonics Approach

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAP) have been widely used as bone implants for its biocompatibility, and bioactivity. Other approaches like scaffold development, drug delivery and nanomaterials preparation are explored recently. Herein, hydroxyapatite incorporated with 5-nitroisatin (HAP-5 N) were prepared and tested for its anticancer potential. The prepared HAP-5 N were found to have rod like structures as seen using scanning electron microscopic analysis. The structural elucidation of 5-nitroisatin were confirmed by performing 2D heteronuclear single quantum correlation experiment. The synthesized HAP-5 N were assessed for its possible role as an anticancer agent against cervical cancer (SiHa) cells. From the study, it was found that HAP-5 N is efficient in inhibiting the growth of cervical cancer cell lines.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Salimi, In-situ synthesis of a novel bioresorbable sodium alginate/hydroxyapatite–calcium pyrophosphate nanocomposite as bone replacement. J. Inorg. Organomet. Polym. Mater. 30, 1769–1775 (2020). https://doi.org/10.1007/s10904-019-01391-x

    Article  CAS  Google Scholar 

  2. S. Elbasuney, Green synthesis of hydroxyapatite nanoparticles with controlled morphologies and surface properties toward biomedical applications. J. Inorg. Organomet. Polym. Mater. 30, 899–906 (2020). https://doi.org/10.1007/s10904-019-01247-4

    Article  CAS  Google Scholar 

  3. H. Zhao, W. Dong, Y. Zheng, A. Liu, J. Yao, C. Li, W. Tang, B. Chen, G. Wang, Z. Shi, The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds. Biomaterials 32, 5837–5846 (2011). https://doi.org/10.1016/j.biomaterials.2011.04.083

    Article  CAS  PubMed  Google Scholar 

  4. S.P. Pathi, D.D.W. Lin, J.R. Dorvee, L.A. Estroff, C. Fischbach, Hydroxyapatite nanoparticle-containing scaffolds for the study of breast cancer bone metastasis. Biomaterials 32, 5112–5122 (2011). https://doi.org/10.1016/j.biomaterials.2011.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. F.J. Martínez-Vázquez, M.V. Cabañas, J.L. Paris, D. Lozano, M. Vallet-Regí, Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater. 15, 200–209 (2015). https://doi.org/10.1016/j.actbio.2014.12.021

    Article  CAS  PubMed  Google Scholar 

  6. M. Vallet-Regí, F. Balas, D. Arcos, Mesoporous materials for drug delivery. Angew. Chemie Int. Ed. 46, 7548–7558 (2007). https://doi.org/10.1002/anie.200604488

    Article  CAS  Google Scholar 

  7. J.L. Paris, M. Vallet-Regí, Ultrasound-activated nanomaterials for therapeutics. Bull. Chem. Soc. Jpn. 93, 220–229 (2020). https://doi.org/10.1246/BCSJ.20190346

    Article  CAS  Google Scholar 

  8. J. Kolmas, S. Krukowski, A. Laskus, M. Jurkitewicz, Synthetic hydroxyapatite in pharmaceutical applications. Ceram. Int. 42, 2472–2487 (2016). https://doi.org/10.1016/j.ceramint.2015.10.048

    Article  CAS  Google Scholar 

  9. M. Itokazu, T. Ohno, T. Tanemori, E. Wada, N. Kato, K. Watanabe, Antibiotic-loaded hydroxyapatite blocks in the treatment of experimental osteomyelitis in rats. J. Med. Microbiol. 46, 779–783 (1997). https://doi.org/10.1099/00222615-46-9-779

    Article  CAS  PubMed  Google Scholar 

  10. K. Ariga, M. Nishikawa, T. Mori, J. Takeya, L.K. Shrestha, J.P. Hill, Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 20, 51–95 (2019). https://doi.org/10.1080/14686996.2018.1553108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K. Ariga, T. Mori, J. Li, Langmuir nanoarchitectonics from basic to frontier. Langmuir 35, 3585–3599 (2019). https://doi.org/10.1021/acs.langmuir.8b01434

    Article  CAS  PubMed  Google Scholar 

  12. V. Malgras, Q. Ji, Y. Kamachi, T. Mori, F.-K. Shieh, K.C.W. Wu, K. Ariga, Y. Yamauchi, Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn. 88, 1171–1200 (2015). https://doi.org/10.1246/bcsj.20150143

    Article  CAS  Google Scholar 

  13. M. Komiyama, K. Yoshimoto, M. Sisido, K. Ariga, Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Jpn. 90, 967–1004 (2017). https://doi.org/10.1246/bcsj.20170156

    Article  Google Scholar 

  14. W.C. Sumpter, The chemistry of Isatin. Chem. Rev. 34, 393–434 (1944). https://doi.org/10.1021/cr60109a003

    Article  CAS  Google Scholar 

  15. K. Han, Y. Zhou, F. Liu, Q. Guo, P. Wang, Y. Yang, B. Song, W. Liu, Q. Yao, Y. Teng, P. Yu, Design, synthesis and in vitro cytotoxicity evaluation of 5-(2-carboxyethenyl)isatin derivatives as anticancer agents. Bioorg. Med. Chem. Lett. 24, 591–594 (2014). https://doi.org/10.1016/j.bmcl.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  16. H. Pervez, N. Khan, S. Zaib, M. Yaqub, M.M. Naseer, M.N. Tahir, J. Iqbal, Synthesis, X-ray molecular structure, biological evaluation and molecular docking studies of some N 4 -benzyl substituted 5-nitroisatin-3-thiosemicarbazones. Bioorg. Med. Chem. 25, 1022–1029 (2017). https://doi.org/10.1016/j.bmc.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  17. K.L. Vine, J.M. Locke, M. Ranson, S.G. Pyne, J.B. Bremner, In vitro cytotoxicity evaluation of some substituted isatin derivatives. Bioorg. Med. Chem. 15, 931–938 (2007). https://doi.org/10.1016/j.bmc.2006.10.035

    Article  CAS  PubMed  Google Scholar 

  18. H.S. Ibrahim, S.M. Abou-Seri, M. Tanc, M.M. Elaasser, H.A. Abdel-Aziz, C.T. Supuran, Isatin-pyrazole benzenesulfonamide hybrids potently inhibit tumor-associated carbonic anhydrase isoforms IX and XII. Eur. J. Med. Chem. 103, 583–593 (2015). https://doi.org/10.1016/j.ejmech.2015.09.021

    Article  CAS  PubMed  Google Scholar 

  19. C. Zhang, J. Yang, Z. Quan, P. Yang, C. Li, Z. Hou, J. Lin, Hydroxyapatite nano- and microcrystals with multiform morphologies: controllable synthesis and luminescence properties. Cryst. Growth Des. 9, 2725–2733 (2009). https://doi.org/10.1021/cg801353n

    Article  CAS  Google Scholar 

  20. V. Karthick, S. Panda, V.G. Kumar, D. Kumar, L.K. Shrestha, K. Ariga, K. Vasanth, S. Chinnathambi, T.S. Dhas, K.S.U. Suganya, Quercetin loaded PLGA microspheres induce apoptosis in breast cancer cells. Appl. Surf. Sci. 487, 211–217 (2019). https://doi.org/10.1016/j.apsusc.2019.05.047

    Article  CAS  Google Scholar 

  21. F. Leaves, O.F. Mirabilis, Cytotoxicity against tumor cell lines of a ribosome-inactivating protein (rip)-like protein isolated from leaves of Mirabilis Jalapa L. Malays. J. Pharm. Sci. 4, 31–41 (2006)

    Google Scholar 

  22. K. Vasanth, G.C. Minakshi, K. Ilango, R.M. Kumar, A. Agrawal, G.P. Dubey, Moringa oleifera attenuates the release of pro-inflammatory cytokines in lipopolysaccharide stimulated human monocytic cell line. Ind. Crops Prod. 77, 44–50 (2015). https://doi.org/10.1016/j.indcrop.2015.08.013

    Article  CAS  Google Scholar 

  23. P.G. Gassman, B.W. Cue, T.-Y. Luh, A general method for the synthesis of isatins. J. Org. Chem. 42, 1344–1348 (1977). https://doi.org/10.1021/jo00428a016

    Article  CAS  Google Scholar 

  24. V.C.A. Prakash, I. Venda, V. Thamizharasi, E. Sathya, Influence of DMSO-Sr on the synthesis of hydroxyapatite by hydrothermal coupled microemulsion method. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01723-2

    Article  Google Scholar 

  25. L. Zhao, Q. Zou, X. Yan, Self-assembling peptide-based nanoarchitectonics. Bull. Chem. Soc. Jpn. 92, 70–79 (2019). https://doi.org/10.1246/bcsj.20180248

    Article  CAS  Google Scholar 

  26. F. Absalan, M.S. Sadjadi, N. Farhadyar, M.H. Sadr, Synthesis of mesoporous hydroxyapatite with controlled pore size using the chitosan as an organic modifier: investigating the effect of the weight ratio and pH value of chitosan on the structural and morphological properties. J. Inorg. Organomet. Polym. Mater. 30, 3562–3573 (2020). https://doi.org/10.1007/s10904-020-01623-5

    Article  CAS  Google Scholar 

  27. Y. Li, Y. Wang, Y. Li, W. Luo, J. Jiang, J. Zhao, C. Liu, Controllable synthesis of biomimetic hydroxyapatite nanorods with high osteogenic bioactivity. ACS Biomater. Sci. Eng. 6, 320–328 (2020). https://doi.org/10.1021/acsbiomaterials.9b00914

    Article  CAS  PubMed  Google Scholar 

  28. Y. Liu, Y. Tang, Y. Tian, J. Wu, J. Sun, Z. Teng, S. Wang, G. Lu, Gadolinium-doped hydroxyapatite nanorods as T1 contrast agents and drug carriers for breast cancer therapy. ACS Appl. Nano Mater. 2, 1194–1201 (2019). https://doi.org/10.1021/acsanm.8b02036

    Article  CAS  Google Scholar 

  29. Y. Ma, A. Wang, J. Li, Q. Li, Q. Han, Y. Chen, S. Wang, X. Zheng, H. Cao, S. Bai, Preparation of hydroxyapatite with high surface area and dispersity templated on calcium carbonate in dipeptide hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 596, 124740 (2020). https://doi.org/10.1016/j.colsurfa.2020.124740

    Article  CAS  Google Scholar 

  30. D.K. Lee, J.Y. Park, M.R. Kim, D.J. Jang, Facile hydrothermal fabrication of hollow hexagonal hydroxyapatite prisms. CrystEngComm 13, 5455–5459 (2011). https://doi.org/10.1039/c1ce05511a

    Article  CAS  Google Scholar 

  31. S.S. Rahavi, O. Ghaderi, A. Monshi, M.H. Fathi, A comparative study on physicochemical properties of hydroxyapatite powders derived from natural and synthetic sources. Russ. J. Non-Ferrous Met. 58, 276–286 (2017). https://doi.org/10.3103/S1067821217030178

    Article  Google Scholar 

  32. Y. Ji, X. Yang, Z. Ji, L. Zhu, N. Ma, D. Chen, X. Jia, J. Tang, Y. Cao, DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components, ACS. Omega. 5, 8572–8578 (2020). https://doi.org/10.1021/acsomega.9b04421

    Article  CAS  Google Scholar 

  33. V. Petkov, Nanostructure by high-energy X-ray diffraction. Mater. Today. 11, 28–38 (2008). https://doi.org/10.1016/S1369-7021(08)70236-0

    Article  CAS  Google Scholar 

  34. A. Rajeswari, V.G.G. Kumar, V. Karthick, T.S.S. Dhas, S.L. Potluri, Hydrothermal synthesis of hydroxyapatite plates prepared using low molecular weight heparin (LMWH). Colloids Surf. B Biointerfaces 111, 764–768 (2013). https://doi.org/10.1016/j.colsurfb.2013.06.040

    Article  CAS  PubMed  Google Scholar 

  35. T. Yokoi, T. Goto, T. Kato, S. Takahashi, J. Nakamura, T. Sekino, C. Ohtsuki, M. Kawashita, Hydroxyapatite formation from octacalcium phosphate and its related compounds: a discussion of the transformation mechanism. Bull. Chem. Soc. Jpn. 93, 701–707 (2020). https://doi.org/10.1246/BCSJ.20200031

    Article  CAS  Google Scholar 

  36. W. Tang, Y. Yuan, C. Liu, Y. Wu, X. Lu, J. Qian, Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine 9, 397–412 (2014). https://doi.org/10.2217/nnm.12.217

    Article  CAS  PubMed  Google Scholar 

  37. X. Liu, D. Qin, Y. Cui, L. Chen, H. Li, Z. Chen, L. Gao, Y. Li, J. Liu, The effect of calcium phosphate nanoparticles on hormone production and apoptosis in human granulosa cells. Reprod. Biol. Endocrinol. 8, 32 (2010). https://doi.org/10.1186/1477-7827-8-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the management of Sathyabama Institute of Science and Technology, Chennai for its stanch support in research activities. Instrumentation facilities by Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama Institute of Science and Technology, Chennai is greatly acknowledged. V.K. would like to thank the Japan Society for the Promotion of Science (JSPS), Japan and Department of Science and Technology (DST) and Indian National Science Academy (INSA), India for his research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Karthick.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

For consideration under the Special Issue “Nanoarchitectonics for Energy and Environment”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthick, V., Kumar, D., Ariga, K. et al. Incorporation of 5-Nitroisatin for Tailored Hydroxyapatite Nanorods and its Effect on Cervical Cancer Cells: A Nanoarchitectonics Approach. J Inorg Organomet Polym 31, 1946–1953 (2021). https://doi.org/10.1007/s10904-021-01891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01891-9

Keywords

Navigation