Skip to main content

Copper-Containing Nanomaterials Derived from Copper(II) Laurate as Antifriction Additives for Oil Lubricants

Abstract

In the present study, an easily accessible method for obtaining copper-containing tribological nanomaterials by thermolysis of copper(II) laurate at 300 °C was developed. The obtained nanoparticles were studied using X-ray diffraction, atomic force microscopy, and sedimentation analysis. The composition of nanoparticles and the size of crystallites are shown to depend on the thermolysis time. The tribological characteristics of copper-containing nanomaterials derived from copper(II) laurate were analyzed as additives to liquid paraffin using a pin-on-disc tribometer (additive concentration 0.025–0.2%, normal loads 49 and 96 N, rotation speed 200 rpm). The optimal concentration of nanomaterials at which the coefficient of friction is the lowest is determined. An increase in load to 98 N leads to a decrease in the coefficient of friction. The mechanism of friction in the presence of the studied nanolubricants is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. I.E. Uflyand, V.A. Zhinzhilo, V.E. Burlakova, Metal-containing nanomaterials as lubricant additives: state-of-the-art and future development. Friction 7, 93–116 (2019)

    Google Scholar 

  2. S.P. Darminesh, N.A.C. Sidik, G. Najafi, R. Mamat, T.L. Ken, Y. Asako, Recent development on biodegradable nanolubricant: a review. Int. J. Heat Mass Transf. 86, 159–165 (2017)

    CAS  Google Scholar 

  3. Z. Tang, S. Li, A review of recent developments of friction modifiers for liquid lubricants (2007-present). Curr. Opin. Solid State Mater. Sci. 18, 119–139 (2014)

    CAS  Google Scholar 

  4. S. Shahnazar, S. Bagheri, S.B.A. Hamid, Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrogen Energy 41, 3153–3170 (2016)

    CAS  Google Scholar 

  5. I. Minami, Molecular science of lubricant additives. Appl. Sci. 7, 445 (2017)

    Google Scholar 

  6. P. Kotia, G.S. Rajkhowa, S.K. Rao, Ghosh, Thermophysical and tribological properties of nanolubricants: a review. Heat Mass Transf. 54, 3493–3508 (2018)

    Google Scholar 

  7. W. Guo, J. Yin, H. Qiu, Y. Guo, H. Wu, M. Xue, Friction of low-dimensional nanomaterial systems. Friction 2, 209–225 (2014)

    CAS  Google Scholar 

  8. M. Gulzar, H.H. Masjuki, M.A. Kalam, M. Varman, N.W.M. Zulkifli, R.A. Mufti, R. Zahid, Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 18, 223 (2016)

    Google Scholar 

  9. R.K. Dang, D. Goyal, S.S. Dhami, A. Chauhan, Effect of nanoparticles based lubricants on static thermal behavior of journal bearings: a review. Res. J. Eng. Technol. 8, 149–153 (2017)

    Google Scholar 

  10. W. Dai, B. Kheireddin, H. Gao, H. Liang, Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016)

    CAS  Google Scholar 

  11. M.K.A. Ali, H. Xianjun, Improving the tribological behavior of internal combustion engines via the addition of nanoparticles to engine oils. Nanotechnol. Rev. 4, 347–358 (2015)

    CAS  Google Scholar 

  12. V.W. Khond, V. Kriplani, Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary Ci engine: a comprehensive review. Renew. Sustain. Energy Rev. 59, 1338–1348 (2016)

    CAS  Google Scholar 

  13. L. Kong, J. Sun, Y. Bao, Preparation, characterization and tribological mechanism of nanofluids. RSC Adv. 7, 12599–12609 (2017)

    CAS  Google Scholar 

  14. L. Peña-Parás, D. Maldonado-Cortés, J. Taha-Tijerina, In: Handbook of Ecomaterials, ed. by L. Martínez, O. Kharissova, B. Kharisov (Springer, Cham, 2019), pp. 3247–3267

  15. S.-W. Zhang, Green tribology: fundamentals and future development. Friction 1, 186–194 (2013)

    Google Scholar 

  16. S.-W. Zhang, Recent developments of green tribology. Surf. Topogr. 4, 023004 (2016)

    Google Scholar 

  17. S.K. Singh, S. Chattopadhyaya, A. Pramanik, S. Kumar, N. Gupta, Influence of nano-particle on the wear behavior of thin film coatings. A review. Int. J. Appl. Eng. Res. 13, 4053–4058 (2018)

    Google Scholar 

  18. S.J. Patil, D.P. Patil, A.P. Shrotri, V.P. Patil, A review on effect of addition of nano particles on tribological properties of lubricants. Int. J. Mech. Eng. Technol. (IJMET) 5, 120–129 (2014)

    Google Scholar 

  19. I.E. Uflyand, G.I. Dzhardimalieva, Nanomaterials Preparation by Thermolysis of Metal Chelates (Springer, Cham, 2018).

    Google Scholar 

  20. J. Padgurskas, R. Rukuiza, I. Prosycevas, R. Kreuvaitis, Tribological properties of lubricant additives of Fe Cu and Co nanoparticles. Tribol. Int. 60, 224–232 (2013)

    CAS  Google Scholar 

  21. F.L.G. Borda, S.J.R. de Oliveira, L.M.S.M. Lazaro, A.J.K. Leiróz, Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles. Tribol. Int. 117, 52–58 (2018)

    CAS  Google Scholar 

  22. P. Garg, A. Kumar, G.D. Thakre, P.K. Arya, A.K. Jain, Investigating efficacy of Cu nano-particles as additive for bio-lubricants. Macromol. Symp. 376, 1700010 (2017)

    Google Scholar 

  23. M.K. Gaur, S.K. Singh, A. Sood, D.S. Chauhan, Advances in design, simulation and manufacturing, in Design, Simulation and Manufacturing. ed. by V. Ivanov, Y. Rong, J. Trojanowska, J. Venus, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, D. Perakovic (Springer, Cham, 2019), pp. 255–268

    Google Scholar 

  24. R. Kalyani, G. Chockalingam, K. Gurunathan, Tribological aspects of metal and metal oxide nanoparticles. Adv. Sci. Eng. Med. 8, 228–232 (2016)

    Google Scholar 

  25. H.N. Meng, Z.Z. Zhang, F.X. Zhao, T. Qiu, X. Zhu, X.J. Lu, Tribological behaviours of Cu nanoparticles recovered from electroplating effluent as lubricant additive. Tribol. Mater. Surf. Interfaces 9, 46–53 (2015)

    CAS  Google Scholar 

  26. Y. Li, T.T. Liu, Y. Zhang, P. Zhang, S. Zhang, Study on the tribological behaviors of copper nanoparticles in three kinds of commercially available lubricants. Ind. Lubr. Tribol. 70, 519–526 (2018)

    Google Scholar 

  27. A.B. Najan, R.R. Navthar, M.J. Gitay, Experimental Investigation of tribological properties using nanoparticles as modifiers in lubricating oil. Int. Res. J. Eng. Technol. (IRJET) 4, 1125–1129 (2017)

    Google Scholar 

  28. Y. Songmei, H. Xuebo, Z. Guangyuan, M. Amin, A novel approach of applying copper nanoparticles in minimum quantity lubrication for milling of Ti-6Al-4V. Adv. Prod. Eng. Manag. 12, 139–150 (2017)

    Google Scholar 

  29. X.-M. Zhang, X.-P. Yang, P. Ouyang, Research progress in copper-containing micro and nano particles as lubricating additives. Xiandai Huagong/Modern. Chem. Ind. 34, 53–56 (2014)

    Google Scholar 

  30. G. Yang, Z. Zhang, S. Zhang, L. Yu, P. Zhang, Synthesis and characterization of highly stable dispersions of copper nanoparticles by a novel one-pot method. Mater. Res. Bull. 48, 1716–1719 (2013)

    CAS  Google Scholar 

  31. H. Hu, H. Peng, G. Ding, Nucleate pool boiling heat transfer characteristics of refrigerant/nanolubricant mixture with surfactant. Int. J. Refrig. 36, 1045–1055 (2013)

    CAS  Google Scholar 

  32. C. Zhang, S. Zhang, S. Song, G. Yang, L. Yu, Z. Wu, X. Li, P. Zhang, Preparation and tribological properties of surface capped copper nanoparticle as a water-based lubricant additive. Tribol. Lett. 54, 25–33 (2014)

    CAS  Google Scholar 

  33. F. Nan, Y. Xu, B. Xu, F. Gao, Y. Wu, Z. Li, Effect of Cu nanoparticles on the tribological performance of attapulgite base grease. Tribol. Trans. 58, 1031–1038 (2015)

    CAS  Google Scholar 

  34. C.P. Koshy, P.K. Rajendrakumar, M.V. Thottackkad, Evaluation of the tribological and thermo–physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear 330–331, 288–308 (2015)

    Google Scholar 

  35. V. Zin, F. Agresti, S. Barison, L. Colla, M. Fabrizio, Influence of Cu, TiO2 nanoparticles and carbon nano-horns on tribological properties of engine oil. J. Nanosci. Nanotechnol. 15, 3590–3598 (2015)

    CAS  PubMed  Google Scholar 

  36. M.I.H.C. Abdullah, M.F.B. Abdollah, N. Tamaldin, H. Amiruddin, N.R. MatNuri, C. Gachot, H. Kaleli, Effect of hexagonal boron nitride nanoparticles as an additive on the extreme pressure properties of engine oil. Ind. Lubr. Tribol. 68, 441–445 (2016)

    Google Scholar 

  37. O.N. Çelik, N. Ay, Y. Göncü, Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Part. Sci. Technol. 31, 501–506 (2013)

    Google Scholar 

  38. H. Xie, B. Jiang, J. He, X. Xia, F. Pan, Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 93, 63–70 (2016)

    CAS  Google Scholar 

  39. P. Thapliyal, A. Kumar, G.D. Thakre, A.K. Jain, Investigation of rheological parameters of lubricants and contact fatigue behavior of steel in the presence of Cu nano-particles. Macromol. Symp. 376, 1700011 (2017)

    Google Scholar 

  40. Y. Du, X. He, Y. Zhan, S. Li, Y. Shen, F. Ning, L. Yan, X. Zhou, Imaging the site-specific activity and kinetics on a single nanomaterial by microchamber array. ACS Catal. 7, 3607–3614 (2017)

    CAS  Google Scholar 

  41. T.H. Noh, O.-S. Jung, Recent advances in various metal-organic channels for photochemistry beyond confined spaces. Acc. Chem. Res. 49, 1835–1843 (2016)

    CAS  PubMed  Google Scholar 

  42. H. Goesmann, C. Feldmann, Nanoparticulate functional materials. Angew. Chem. Int. Ed. 49, 1362–1395 (2010)

    CAS  Google Scholar 

  43. A. Schatz, O. Reiser, W.J. Stark, Nanoparticles as semi-heterogeneous catalyst supports. Chem. Eur. J. 16, 8950–8967 (2010)

    PubMed  Google Scholar 

  44. Z. Zhuang, Q. Peng, Y. Li, Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem. Soc. Rev. 40, 5492–5513 (2011)

    CAS  PubMed  Google Scholar 

  45. A. Lassenberger, T.A. Grünewald, P.D.J. van Oostrum, H. Rennhofer, H. Amenitsch, R. Zirbs, H.C. Lichtenegger, E. Reimhult, Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem. Mater. 29, 4511–4522 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. A.D. Pomogailo, G.I. Dzhardimalieva, Nanostructured Materials Preparation via Condensation Ways (Springer, Dordrecht, 2014).

    Google Scholar 

  47. N. Rai, B.A. Malik, Studies of Some Novel Coordination Compounds and Their Application in Nanoparticle Synthesis (Grin Verlag, Munich, Germany, 2018).

    Google Scholar 

  48. J. van Embden, A.S.R. Chesman, The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 27, 2246–2285 (2015)

    Google Scholar 

  49. B.G. Rao, D. Mukherjee, B.M., In: Nanostructures for Novel Therapy. Synthesis, Characterization and Applications, ed. by D. Ficai, A.M. Grumezescu (Elsevier, Amsterdam, 2017), pp. 1–36

  50. A.P. Reverberi, N.T. Kuznetsov, V.P. Meshalkin, M. Salerno, B. Fabiano, Systematical analysis of chemical methods in metal nanoparticles synthesis. Theor. Found. Chem. Eng. 50, 59–66 (2016)

    CAS  Google Scholar 

  51. O. Carp, In: Reactions and Mechanisms in Thermal Analysis of Advanced Materials, ed. by A. Tiwari, B. Raj (Scrivener Publishing LLC, Salem, MA, 2015), pp. 63–84

  52. Y. Eom, M. Abbas, H.Y. Noh, Morphology-controlled synthesis of highly crystalline Fe3O4 and CoFe2O4 nanoparticles using a facile thermal decomposition method. RSC Adv. 6, 15861–15867 (2016)

    CAS  Google Scholar 

  53. R. Hufschmid, H. Arami, R.M. Ferguson, M. Gonzales, E. Teeman, L.N. Brush, N.D. Browning, K.M. Krishnan, Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7, 11142–11154 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. F.B. Effenberger, R.A. Couto, P.K. Kiyohara, G. Machado, S.H. Masunaga, R.F. Jardim, L.M. Rossi, Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate. Nanotechnology 28, 115603 (2017)

    PubMed  Google Scholar 

  55. Z. Fereshteh, M. Salavati-Niasari, Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Adv. Colloid Interface Sci. 243, 86–104 (2017)

    CAS  PubMed  Google Scholar 

  56. M.M. Al Majthoub, Synthesis and morphological characterization of NiO nanoparticles through thermal decomposition method of new solid Ni(II) schiff base complex. J. Comput. Theor. Nanosci. 13, 7014–7017 (2016)

    CAS  Google Scholar 

  57. K. Motevalli, Z. Zarghami, M. Panahi-Kalamuei, Simple, novel and low-temperature synthesis of rod-like NiO nanostructure via thermal decomposition route using a new starting reagent and its photocatalytic activity assessment. J. Mater. Sci. 27, 4794–4799 (2016)

    CAS  Google Scholar 

  58. M. Madkour, Y.K. Abdel-Monem, F. Al Sagheer, Controlled synthesis of NiO and Co3O4 nanoparticles from different coordinated precursors: impact of precursor’s geometry on the nanoparticles characteristics. Ind. Eng. Chem. Res. 55, 12733–12741 (2016)

    CAS  Google Scholar 

  59. F. Davar, M.R. Loghman-Estarki, M. Salavati-Niasari, M. Mazaheri, Controllable synthesis of covellite nanoparticles via thermal decomposition method. J. Clust. Sci. 27, 593–602 (2016)

    CAS  Google Scholar 

  60. M. Ghiasi, A. Malekzadeh, H. Mardani, Synthesis and optical properties of cubic Co3O4 nanoparticles via thermal treatment of a trinuclear cobalt complex. Mater. Sci. Semicond. Process. 42, 311–318 (2016)

    CAS  Google Scholar 

  61. S. Kitabayashi, N. Koga, Thermal decomposition of Tin(II) oxyhydroxide and subsequent oxidation in air: kinetic deconvolution of overlapping heterogeneous processes. J. Phys. Chem. C 119, 16188–16199 (2015)

    CAS  Google Scholar 

  62. H.M. Aly, M.E. Moustafa, M.Y. Nassar, E.A. Abdelrahman, Synthesis and characterization of novel Cu (II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole schiff bases: a new route to CuO nanoparticles. J. Mol. Struct. 1086, 223–231 (2015)

    CAS  Google Scholar 

  63. S.Y. Ebrahimipour, I. Sheikhshoaie, J. Castro, W. Haase, M. Mohamadi, S. Foro, M. Sheikhshoaie, S. Esmaeili-Mahani, A novel cationic copper(II) schiff base complex: synthesis, characterization, crystal structure, electrochemical evaluation, anti-cancer activity, and preparation of its metal oxide nanoparticles. Inorg. Chim. Acta 430, 245–252 (2015)

    CAS  Google Scholar 

  64. S. Mishra, S. Daniele, Metal–organic derivatives with fluorinated ligands as precursors for inorganic nanomaterials. Chem. Rev. 115, 8379–8448 (2015)

    CAS  PubMed  Google Scholar 

  65. M. Iacob, C. Racles, C. Tugui, G. Stiubianu, A. Bele, L. Sacarescu, D. Timpu, M. Cazacu, From iron coordination compounds to metal oxide nanoparticles. Beilstein J. Nanotechnol. 7, 2074–2087 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. P. Chaudhary, S. Sikarwar, B.C. Yadav, G.I. Dzhardimalieva, N.D. Golubeva, I.E. Uflyand, Synthesis and characterization of copper (II) nitrate polyacrylamide & its application as opto-electronic humidity sensor. Sens. Actuators A 263, 415–422 (2017)

    CAS  Google Scholar 

  67. I.E. Uflyand, V.A. Zhinzhilo, E.G. Drogan, D.A. Ostapenko, A.A. Novikova, V.E. Burlakova, G.I. Dzhardimalieva, Metal chelate monomers based on nickel(II) cinnamate and chelating N-heterocycles as precursors of nanostructured materials. J. Coord. Chem. 72, 796–813 (2019)

    CAS  Google Scholar 

  68. I.E. Uflyand, V.A. Zhinzhilo, G.I. Dzhardimalieva, New example of metal-containing monomers for frontal polymerization. ChemistrySelect 4, 2105–2108 (2019)

    CAS  Google Scholar 

  69. I.E. Uflyand, V.A. Zhinzhilo, E.A. Mukhanova, E.V. Karyukov, M.A. Tautieva, D.A. Ostapenko, V.E. Burlakova, G.I. Dzhardimalieva, Metal Chelate monomers based on nickel maleate and chelating N-heterocycles as precursors of core-shell nanomaterials with advanced tribological properties. Z. Anorg. Allg. Chem. 645, 758–767 (2019)

    CAS  Google Scholar 

  70. I.E. Uflyand, V.A. Zhinzhilo, G.I. Dzhardimalieva, Coordination polymer based on Nickel(II) maleate and 4′-Phenyl-2,2′:6′,2″-terpyridine: synthesis, crystal structure and conjugated thermolysis. J. Inorg. Organomet. Polym. Mater. 30, 965–975 (2020)

    CAS  Google Scholar 

  71. R.C. Mehrota, R. Bohra, Metal Carboxylates (Academic Press, London, 1983).

    Google Scholar 

  72. M. Pajtášová, D. Ondrušová, E. Jóna, S.C. Mojumdar, S. L’alíkova, T. Bazyláková, M. Gregor, Spectral and thermal characteristics of copper(II) carboxylates with fatty acid chains and their benzothiazole adducts. J. Therm. Anal. Calorim. 100, 769–777 (2010)

    Google Scholar 

  73. P.N. Nelson, R.A. Taylor, Theories and experimental investigations of the structural and thermotropic mesomorphic phase behaviors of metal carboxylates. Appl. Petrochem. Res. 4, 253–285 (2014)

    CAS  Google Scholar 

  74. R. Jenkins, R.L. Snyder, Chemical Analysis: Introduction to X-Ray Powder Diffractometry (Wiley, Weinheim, 1996).

    Google Scholar 

  75. J.M.J. Santillán, F.A. Videla, M.B. Fernández van Raap, D.C. Schinca, L.B. Scaffardi, Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids. J. Appl. Phys. 113, 134305 (2013)

    Google Scholar 

  76. G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007)

    CAS  Google Scholar 

  77. O.V. Dementeva, V.M. Rudoy, Copper nanoparticles synthesized by the polyol method and their oxidation in polar dispersion media. The influence of chloride and acetate ions. Colloid J. 74, 668–674 (2012)

    CAS  Google Scholar 

  78. T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc, M.C. Dang, Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci.-Nanosci. 2, 015009 (2011)

    Google Scholar 

  79. V.E. Burlakova, E.G. Drogan, A.A. Novikova, M.A. Belikova, effect of the composition of the lubricating medium on the structure of surface layers formed by the friction of a servovite film. J. Synch. Investig. 13, 351–358 (2019)

    CAS  Google Scholar 

  80. S.N. Magonov, M.-H. Whangbo, Surface Analysis with STM and AFM: Experimental and Theoretical Aspects of Image Analysis (Wiley, Weinheim, 2008).

    Google Scholar 

  81. J. Janus, G. Fauxpoint, Y. Arntz, H. Pelletier, O. Etienne, Surface roughness and morphology of three nanocomposites after two different polishing treatments by a multitechnique approach. Dent. Mater. 26, 416–425 (2010)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Uflyand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kharissova, O.V., Irkha, V.A., Drogan, E.G. et al. Copper-Containing Nanomaterials Derived from Copper(II) Laurate as Antifriction Additives for Oil Lubricants. J Inorg Organomet Polym 31, 934–944 (2021). https://doi.org/10.1007/s10904-020-01855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01855-5

Keywords

  • Nanomaterial
  • Copper
  • Thermolysis
  • Friction
  • Lubricant