Skip to main content
Log in

Efficient Synthesis of Multiply Substituted Triazines Using GO@N-Ligand-Cu Nano-Composite as a Novel Catalyst

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

GO@N-Ligand-Cu nano-composites were found to function as an efficient catalyst for the synthesis of triazines from benzhydrazides, ammonium acetate, and benzyl derivatives. Graphene-oxide is improved with N,N'-bis(pyridin-2-ylmethyl)benzene-1,2-diamine and after that is matched with copper (Cu). This procedure avoids the use of precious metals and the heterogeneous nature of the GO, on the other hand, the catalyst is easily removed from the product through simple filtration.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Miao, L. Jiang, L. Ren, Q. Xue, F. Yan, W. Shi, X. Li, J. Sheng, S. Kai, Iodine-catalyzed coupling of β-hydroxyketones with aromatic amines to form β-aminoketones and Benzo[h]quinolones. Tetrahedron 75, 2215–2228 (2019)

    Article  CAS  Google Scholar 

  2. L. Ouyang, J. Huang, J. Li, C. Qi, W. Wu, H. Jiang, Palladium-catalyzed oxidative amination of homoallylic alcohols: Sequentially installing carbonyl and amino groups along an alkyl chain. Chem. Commun. 53, 10422–10425 (2017)

    Article  CAS  Google Scholar 

  3. G.S. Kumar, D. Singh, M. Kumar, M. Kapur, Palladium-catalyzed aerobic oxidative coupling of allylic alcohols with anilines in the synthesis of nitrogen heterocycles. J. Org. Chem. 83, 3941–3951 (2018)

    Article  CAS  Google Scholar 

  4. L. Liu, Y.P. Zhu, M. Su, Z.Y. Yuan, Metal-free carbonaceous materials as promising heterogeneous catalysts. ChemCatChem. 7, 2765–2787 (2015)

    Article  CAS  Google Scholar 

  5. Z. Zhang, S. Yang, H. Li, Y. Zan, X. Li, Y. Zhu, M. Dou, F. Wang, Sustainable carbonaceous materials derived from biomass as metal-free electrocatalysts. Adv. Mater. 31, 1805718 (2019)

    Article  Google Scholar 

  6. M. Muschi, C. Serre, Progress and challenges of graphene oxide/metal-organic composites. Coord. Chem. Rev. 387, 262–272 (2019)

    Article  CAS  Google Scholar 

  7. O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2016)

    Article  Google Scholar 

  8. D.R. Dreyer, H.P. Jia, C.W. Bielawski, Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010)

    CAS  Google Scholar 

  9. K.P. Patel, E.M. Gayakwad, V.V. Patil, G.S. Shankarling, Graphene oxide: a metal-free carbocatalyst for the synthesis of diverse amides under solvent-free conditions. Adv. Synth. Catal. 361, 2107–2116 (2019)

    Article  CAS  Google Scholar 

  10. A. Khannanov, A. Kiiamov, A. Valimukhametova, D.A. Tayurskii, F. Börrnert, U. Kaiser, S. Eigler, F.G. Vagizov, A.M. Dimiev, γ-Iron phase stabilized at room temperature by thermally processed graphene oxide. J. Am. Chem. Soc. 140, 9051–9055 (2018)

    Article  CAS  Google Scholar 

  11. A. Khannanov, A. Kiiamov, A. Valimukhametova, F.G. Vagizov, A.M. Dimiev, Direct growth of oriented nanocrystals of gamma-iron on graphene oxide substrates. Detailed analysis of the factors affecting unexpected formation of the gamma-iron phase. New J. Chem. 43, 12923–12931 (2019)

    Article  CAS  Google Scholar 

  12. A. Lerf, H.Y. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998)

    Article  CAS  Google Scholar 

  13. D. Li, R.B. Kaner, Graphene-based materials. Science 320, 1170–1171 (2008)

    Article  CAS  Google Scholar 

  14. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  CAS  Google Scholar 

  15. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    Article  CAS  Google Scholar 

  16. S. Guajardo, T. Figueroa, J. Borges, M. Meléndrez, K. Fernández, Comparative study of graphene oxide-gelatin aerogel synthesis: chemical characterization, morphologies and functional properties. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01770-9

    Article  Google Scholar 

  17. M.R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S.I. Noro, T. Yamada, Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 135, 8097–8100 (2013)

    Article  CAS  Google Scholar 

  18. G. Brahmachari, Green Synthetic Approaches for Biologically Relevant Heterocycles (Elsevier, Amsterdam, 2015), pp. 1–6

    Book  Google Scholar 

  19. H.R. Tavakoli, S.M. Moosavi, A. Bazgir, ZrOCl2·8H2O as an efficient catalyst for the pseudo four-component synthesis of benzopyranopyrimidines. J. Korean. Chem. Soc. 57, 60–263 (2013)

    Google Scholar 

  20. O. Tekin, S. Uysal, Synthesis and characterizations of s-triazine polymeric complexes including epoxy groups: investigation of their magnetic and thermal properties. J. Inorg. Organomet. Polym. Mater. 29, 1701–1715 (2019)

    Article  CAS  Google Scholar 

  21. H.S. Moon, E.M. Jacobson, S.M. Khersonsky, M.R. Luzung, D.P. Walsh, W. Xiong, G.R. Rosania, A novel microtubule destabilizing entity from orthogonal synthesis of triazine library and zebrafish embryo screening. J. Am. Chem. Soc. 124, 11608–11609 (2002)

    Article  CAS  Google Scholar 

  22. D. Scharn, H. Wenschuh, U. Reineke, J. Schneider-Mergener, L. Germeroth, Spatially addressed synthesis of amino-and amino-oxy-substituted 1,3,5-triazine arrays on polymeric membranes. J. Comb. Chem. 2, 361–369 (2000)

    Article  CAS  Google Scholar 

  23. J.L. Silen, A.T. Lu, D.W. Solas, M.A. Gore, D. MacLean, N.H. Shah, J.M. Coffin, N.S. Bhinderwala, Y. Wang, K.T. Tsutsui, G.C. Look, D.A. Campbell, R.L. Hale, M. Navre, C.R. DeLuca-Flaherty, Screening for novel antimicrobials from encoded combinatorial libraries by using a two-dimensional agar format. Antimicrob. Agents Chemother. 42, 1447–1453 (1998)

    Article  CAS  Google Scholar 

  24. H. Filippusson, L.S. Erlendsson, C.R. Lowe, Design, synthesis and evaluation of biomimetic affinity ligands for elastases. J. Mol. Recognit. 13, 370–381 (2000)

    Article  CAS  Google Scholar 

  25. W. He, J.H. Guo, C.K. Cao, X.K. Liu, J.Y. Lv, S.W. Chen, P.J. Liu, Q.L. Yan, Catalytic reactivity of graphene oxide stabilized transition metal complexes of triaminoguanidine on thermolysis of RDX. J. Phys. Chem. C 26, 14714–14724 (2018)

    Article  Google Scholar 

  26. R. Ghorbani-Vaghei, A. Shahriari, Z. Salimi, S. Hajinazari, Solvent-free synthesis of triazines using N-halosulfonamides. RSC Adv. 5, 3665–3669 (2015)

    Article  CAS  Google Scholar 

  27. T.M. Potewar, R.J. Lahoti, D. Thomas, K.V. Srinivasan, Efficient synthesis of 3,5,6-trisubstituted-1,2,4-triazines in the brønsted acidic ionic liquid, 1-n-butylimidazolium tetrafluoroborate ([Hbim]BF4). Synth. Commun. 37, 261–269 (2007)

    Article  CAS  Google Scholar 

  28. Z. Karamshahi, R. Ghorbani-Vaghei, H. Keypour, M.T. Rezaei, Highly efficient synthesis of chromeno[2,3-b]pyridine using Graphene-Oxide/N1, N3-bis (pyridin-2-ylmethyl)propane-1,3-diamine-copper nanocomposites as a novel catalyst. Appl. Organomet. Chem. (2020). https://doi.org/10.1002/aoc.5737

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Bu-Ali Sina University, Center of Excellence Developmental of Environmentally Friendly Methods for Chemical Synthesis (CEDEFMCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Ghorbani-Vaghei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami-Nori, A., Karamshahi, Z. & Ghorbani-Vaghei, R. Efficient Synthesis of Multiply Substituted Triazines Using GO@N-Ligand-Cu Nano-Composite as a Novel Catalyst. J Inorg Organomet Polym 31, 1801–1810 (2021). https://doi.org/10.1007/s10904-020-01830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01830-0

Keywords

Navigation