Skip to main content
Log in

Effect of Li+ Ion Substitution on Structural and Dielectric Properties of Bi0.5Na0.5-xLixTiO3 Nanoceramics

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, we fabricated Li+ doped Bi1/2Na1/2-xLixTiO3 [BNLT] (x = 0.0, 0.025, 0.05, 0.075 and 0.1) nanoceramics by double sintered solid-state reaction method. The structural, optical, dielectric and ferroelectric properties of the ceramic samples have been investigated. X-ray diffraction results confirm that all the ceramics are pure phase perovskite with rhombohedral structure and R3c space group. The different bonds (Bi3+/Na+/Li+ and Ti4+–O) related to vibrational modes have been studied by analyzing the Raman spectra. The observed optical band gaps were found to decrease from 3.37 to 3.31 eV as the Li+ doping is increased. The dielectric permittivity (ε′) and loss factor (tan δ) reduces with a raise in the frequency whereas at elevated frequency both became constant. Dielectric plot show irregular trends with increasing Li+ ion replacement. The ac conductivity is found to rise with a higher frequency. Modulus and complex impedance study point toward the continuation of equal grain and grain boundary assistance in BNLT ceramics. The PE hysteresis loops verify the ferroelectric nature of all the ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Eric Cross, Ferroelectrics 76, 241–267 (1987)

    Article  Google Scholar 

  2. S. Sipahioǧlu, S. Madakbaş, L. Arda, K. Esmer, J. Inorg. Organomet. Polym. Mater. 23, 333–339 (2013)

    Article  CAS  Google Scholar 

  3. D. Lin, D. Xiao, J. Zhu, P. Yu, Appl. Phys. Lett. 88, 2004–2007 (2006)

    Google Scholar 

  4. T. Zheng, J. Wu, D. Xiao, J. Zhu, Prog. Mater. Sci. 98, 552–624 (2018)

    CAS  Google Scholar 

  5. J. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. R Rep. 135, 1–57 (2019)

    Article  Google Scholar 

  6. P. Saxena, A. Kumar, P. Sharma, D. Varshney, J. Alloys Compd. 682, 418–423 (2016)

    Article  CAS  Google Scholar 

  7. H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen, K. Zhou, D. Zhang, C.R. Bowen, C. Wan, Chem. Soc. Rev. 48, 4424–4465 (2019)

    Article  CAS  PubMed  Google Scholar 

  8. A.P.B. Selvadurai, V. Pazhnivelu, B.K. Vasanth, C. Jagadeeshwaran, R. Murugaraj, J. Mater. Sci. Mater. Electron. 26, 7655–7665 (2015)

    Article  CAS  Google Scholar 

  9. N. Lei, M. Zhu, P. Yang, L. Wang, L. Wang, Y. Hou, H. Yan, J. Appl. Phys. 109, 54102 (2011)

    Article  CAS  Google Scholar 

  10. R.D. Shannon, Acta Cryst. 32, 751 (1976)

    Article  Google Scholar 

  11. N.D. Quan, V.N. Hung, N. Van Quyet, H.V. Chung, D.D. Dung, AIP Adv. 4, 3–10 (2014)

    Article  CAS  Google Scholar 

  12. G.C. da, M.H. Lente, Ferroelectrics 534, 29–41 (2018)

    Article  CAS  Google Scholar 

  13. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, J. Rödel, J. Appl. Phys. 110, 74106 (2011)

    Article  CAS  Google Scholar 

  14. V. Dorcet, G. Trolliard, P. Boullay, Chem. Mater. 20, 5061–5073 (2008)

    Article  CAS  Google Scholar 

  15. Y. Liu, Y. Lu, S. Dai, J. Alloys Compd. 484, 801–805 (2009)

    Article  CAS  Google Scholar 

  16. Z.F. Li, C.L. Wang, W.L. Zhong, J.C. Li, M.L. Zhao, J. Appl. Phys. 94, 2548–2552 (2003)

    Article  CAS  Google Scholar 

  17. G.J. Lee, B.H. Kim, S.A. Yang, J.J. Park, S.D. Bu, M.K. Lee, J. Am. Ceram. Soc. 100, 678–685 (2017)

    Article  CAS  Google Scholar 

  18. S. Patel, A. Mishra, M.D. Varshney, AIP Conf. Proc. 2100, 3–6 (2019)

    Google Scholar 

  19. B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, J. Phys. D 44, 355402 (2011)

    Article  CAS  Google Scholar 

  20. K.Y. Tsui, N. Onishi, R.F. Berger, J. Phys. Chem. C 120, 23293–23298 (2016)

    Article  CAS  Google Scholar 

  21. P. Choudhary, P. Saxena, A. Yadav, V.N. Rai, A. Mishra, Ionics (Kiel). 25, 4991–5001 (2019)

    Article  CAS  Google Scholar 

  22. R. Sivakami, S. Dhanuskodi, R. Karvembu, Spectrochim. Acta A 152, 43–50 (2016)

    Article  CAS  Google Scholar 

  23. A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251–256 (2011)

    Article  CAS  Google Scholar 

  24. M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, U.V. Waghmare, J. Appl. Phys. 113, 1–7 (2013)

    Article  CAS  Google Scholar 

  25. P. Saxena, P. Choudhary, A. Yadav, V.N. Rai, A. Mishra, J. Mater. Sci. Mater. Electron. 31, 12444–12454 (2020)

    Article  CAS  Google Scholar 

  26. S. Patel, P. Saxena, M. Varshney, D. Varshney, AIP Conf. Proc. 2115, 1–4 (2019)

    Google Scholar 

  27. C. He, Y. Zhang, L. Sun, J. Wang, T. Wu, F. Xu, C. Du, K. Zhu, Y. Liu, J. Phys. D 46, 1–6 (2013)

    Google Scholar 

  28. D.A. Solís-Casados, L. Escobar-Alarcón, A. Arrieta-Castañeda, E. Haro-Poniatowski, Mater. Chem. Phys. 172, 11–19 (2016)

    Article  CAS  Google Scholar 

  29. J. George, C.K.V. Kumari, K.S. Joseph, J. Appl. Phys. 54, 5347–5349 (1983)

    Article  CAS  Google Scholar 

  30. M. Borah, D. Mohanta, Appl. Phys. A 115, 1057–1067 (2014)

    Article  CAS  Google Scholar 

  31. P. Saxena, P. Choudhary, A. Yadav, B. Dewangan, V.N. Rai, A. Mishra, Appl. Phys. A 126, 765 (2020)

    Article  CAS  Google Scholar 

  32. N. Zarrin, S. Husain, D.D. Gaur, A. Somvanshi, M. Fatema, J. Mater. Sci. Mater. Electron. 31, 3466–3478 (2020)

    Article  CAS  Google Scholar 

  33. P. Saxena, D. Varshney, J. Alloys Compd. 705, 320–326 (2017)

    Article  CAS  Google Scholar 

  34. A.P.A. Singh, K. Prasad, Process. Appl. Ceram. 9, 33–42 (2015)

    Article  Google Scholar 

  35. Q. Xu, J. Xie, Z. He, L. Zhang, M. Cao, X. Huang, M.T. Lanagan, H. Hao, Z. Yao, H. Liu, J. Eur. Ceram. Soc. 37, 99–106 (2017)

    Article  CAS  Google Scholar 

  36. R. Prateek, S. Bhunia, A. Siddiqui, R.K. Garg, ACS Appl. Mater. Interfaces 11, 14329–14339 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. W. Lu, Y. Wang, G. Fan, X. Wang, F. Liang, J. Alloys Compd. 509, 2738–2744 (2011)

    Article  CAS  Google Scholar 

  38. R. Zuo, H. Wang, B. Ma, L. Li, J. Mater. Sci. Mater. Electron. 20, 1140–1143 (2009)

    Article  CAS  Google Scholar 

  39. Y. Ehara, N. Novak, S. Yasui, M. Itoh, K.G. Webber, Appl. Phys. Lett. 107, 262903 (2015)

    Article  CAS  Google Scholar 

  40. K.P. Karishma Kumari, A. Prasad, Am. J. Mater. Sci. 6, 1–18 (2016)

    Google Scholar 

  41. N. Pradhani, P.K. Mahapatra, R.N.P. Choudhary, J. Inorg. Organomet. Polym. Mater. 2020, 1–8 (2020)

    Google Scholar 

  42. A.K. Roy, A. Singh, K. Kumari, K. Amarnath, A. Prasad, K. Prasad, ISRN Ceram. 2012, 1–10 (2012)

    Article  CAS  Google Scholar 

  43. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Mater. Chem. Phys. 99, 150–159 (2006)

    Article  CAS  Google Scholar 

  44. V.K. Prateek, R.K. Thakur, Chem. Rev. 116, 4260–4317 (2016)

    Article  CAS  PubMed  Google Scholar 

  45. V. Purohit, R.N.P. Choudhary, M. Sahu, J. Inorg. Organomet. Polym. Mater. 30, 3026–3035 (2020)

    Article  CAS  Google Scholar 

  46. R. Prateek, A. Bhunia, R.K. Garg, ACS Appl. Energy Mater. 2, 6146–6152 (2019)

    Article  CAS  Google Scholar 

  47. D. Prateek, N. Singh, A. Singh, R.K. Garg, Compos. Sci. Technol. 174, 158–168 (2019)

    Article  CAS  Google Scholar 

  48. S. Prateek, R. Siddiqui, N. Bhunia, A. Singh, R.K. Garg, Gupta. Mater. Adv. 1, 680–688 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

UGC-DAE-CSR, as an institute is acknowledged for extending its facilities. Authors acknowledge fruitful discussion with Dr. M. Gupta, Dr. V. G. Sathe, Dr. U. P. Deshpande and Dr. V. R. Reddy of UGC-DAE CSR, Indore. Thanks to Mr. Layanta Behera and Mr. V. K. Ahire for their technical assistance. The authors are also thankful to the Late Dr. Dinesh Varshney, for his support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susheel Patel or Pallavi Saxena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Saxena, P., Choudhary, P. et al. Effect of Li+ Ion Substitution on Structural and Dielectric Properties of Bi0.5Na0.5-xLixTiO3 Nanoceramics. J Inorg Organomet Polym 31, 851–864 (2021). https://doi.org/10.1007/s10904-020-01818-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01818-w

Keywords

Navigation