Skip to main content
Log in

Microwave Thermally Assisted Porous Structured Cerium Oxide/Zinc Oxide Design: Fabrication, Electrochemical Activity Towards Pb Ions, Anticancer Assessment in HeLa and VERO Cell Lines

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this research work, Cerium Oxide/Zinc Oxide (CeO2/ZnO) composite nanorods are fabricated on aluminium foil substrate using microwave assisted hydrothermal technique. Their crystalline and morphological properties were confirmed using X-Ray diffraction technique (XRD) and scanning electron microscopy (SEM). The aim is to estimate the potential purpose for implementing to possible lead sensor and to analyse their anti-cancer properties against HeLa cells for cervical cancer applications. The developed structural CeO2/ZnO composite and ZnO nanoparticle systems have been evaluated for anti-cancer efficacy against HeLa (cervical cancerous cell line) and normal (VERO-non cancerous) cell lines. Their results reveal that, CeO2/ZnO composite nanorods have higher cytotoxic behavior than ZnO NPs against HeLa cancer cells. Under optimized conditions, cyclic voltammetry (CV) was used to study the surface area and employed as working electrode to exploit on sensor characteristics towards the Pb ions. The substantial working electrode characteristics were investigated in phosphate buffer solution (PBS pH 7.4) diluted rice water medium using CV towards typical Pb ions detection. Differential pulse voltammetry (DPV) reveals the sensitivity (19.32 µM/mA) with detection limit (LOD) 14.7 nM and compared with previously reported electrodes exhibiting significant electrochemical sensing activity towards Pb ions. Thus the outcomes on structural CeO2/ZnO composite system can be used as electrochemical lead sensor and cervical cancer diagnosis applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.M. Kirwan, P. Symonds, J.A. Green et al., A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother. Oncol. 68, 217–226 (2003)

    PubMed  Google Scholar 

  2. E.K. Tiburu, H.N. Fleischer, E.O. Aidoo et al., Crystallization of linde type A nanomaterials at two temperatures exhibit differential inhibition of HeLa cervical cancer cells in vitro. J. Biomim. Biomater. Biomed. Eng. 28, 66–77 (2016)

    Google Scholar 

  3. G. Aragaya, A. Merkoc, Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 84, 49–61 (2012)

    Google Scholar 

  4. G. Flora, D. Gupta, A. Tiwari, Toxicity of lead: a review with recent updates. Interdiscip. Toxicol. 5, 47–58 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Jaishankar, T. Tseten, N. Anbalagan et al., Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60–72 (2014)

    PubMed  PubMed Central  Google Scholar 

  6. S. Anandan, N. Ohashi, M. Miyauchi, ZnO-based visible-light photocatalyst: band-gap engineering and multi-electron reduction by co-catalyst. Appl. Catal. B Environ. 100, 502–509 (2010)

    CAS  Google Scholar 

  7. Q. Yu, J. Li, H. Li, Q. Wang, S. Cheng, L. Li, Fabrication, structure, and photocatalytic activities of boron-doped ZnO nanorods hydrothermally grown on CVD diamond film. Chem. Phys. Lett. 539–540, 74–78 (2012)

    Google Scholar 

  8. C. Xia, N. Wang, L. Wang, L. Guo, Synthesis of nanochain-assembled ZnO flowers and their application to dopamine sensing. Sens. Actuators B 147, 629–634 (2010)

    CAS  Google Scholar 

  9. R. Saravanan, N. Karthikeyan, S. Govindan et al., Photocatalytic degradation of organic dyes using ZnO/CeO2 nanocomposite material under visible light. Adv. Mater. Res. 584, 381–385 (2012)

    CAS  Google Scholar 

  10. S.A. Ansari, M.M. Khan, M.O. Ansari et al., Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications. RSC Adv. 4, 16782–16791 (2014)

    CAS  Google Scholar 

  11. M.M. Khan, S.A. Ansari, D. Pradhan et al., Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Ind. Eng. Chem. Res. 53, 9754–9763 (2014)

    CAS  Google Scholar 

  12. M. Faisal, S.B. Khan, M.M. Rahman et al., Role of ZnO-CeO2 Nanostructures as a Photo-catalyst and Chemi-sensor. J. Mater. Sci. Technol. 27, 594–600 (2011)

    CAS  Google Scholar 

  13. S. Maensiri, C. Masingboon, P. Laokul et al., Egg White synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles. Cryst. Growth Des. 7(950), 955 (2007)

    Google Scholar 

  14. Y. He, B. Yang, G. Cheng, On the oxidative coupling of methane with carbon dioxide over CeO2/ZnO nanocatalysts. Catal. Today 98, 595–600 (2004)

    CAS  Google Scholar 

  15. Y. He, X. Yu, T. Li, L. Yan, B. Yang, Preparation of CeO2/ZnO nanostructured microspheres and their catalytic properties. Powder Technol. 166, 72–76 (2006)

    CAS  Google Scholar 

  16. W. Xu, J. Wang, L. Wang, G. Sheng et al., Enhanced arsenic removal from water by hierarchically porous CeO2–ZrO2 nanospheres: role of surface and structure-dependent properties. J. Hazard. Mater. 260, 498–507 (2013)

    CAS  PubMed  Google Scholar 

  17. K. Singh, A.A. Ibrahim, A. Umar et al., Synthesis of CeO2-ZnO Nanoellipsoids as potential scaffold for the efficient detection of 4-nitrophenol. Sens. Actuators B Chem. 202, 1044–1050 (2014)

    CAS  Google Scholar 

  18. A. Sivakumar, B. Murugesan, A. Loganathan, P. Sivakumar, Synthesis of ZnO nanowire and ZnO/CeO2 solid solution nanowire by bio-morphing and its characterization. J Taiwan Inst. Chem. Eng. 78, 462–470 (2017)

    CAS  Google Scholar 

  19. B.G. Mishra, G.R. Rao, Promoting effect of ceria on the physicochemical and catalytic properties of CeO2–ZnO composite oxide catalysts. J. Mol. Catal. A Chem. 2006(243), 204–213 (2006)

    Google Scholar 

  20. Z. Diaconeasa, L. Barbu-tudoran, C. Coman et al., Evaluation of antiproliferative potential of cerium oxide nanoparticles on hela human cervical tumor cell. Bull. Univ. Agric Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 72, 109–111 (2015)

    Google Scholar 

  21. M. Pešić, A. Podolski-Renić, S. Stojković, B. Matović et al., Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chem. Biol. Interact. 232, 85–93 (2015)

    PubMed  Google Scholar 

  22. S. Mittal, A. Pandey, Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed. Res. Int. (2014). https://doi.org/10.1155/2014/891934

    Article  PubMed  PubMed Central  Google Scholar 

  23. J. Saranya, B.S. Sreeja, G. Padmalaya, S. Radha, T. Manikandan, Ultrasonic assisted cerium oxide/graphene oxide hybrid: preparation, anti-proliferative, apoptotic induction and G2/M cell cycle arrest in HeLa cell lines. J. Inorg. Organomet. Polym. Mater. 30, 2666–2676 (2020)

    CAS  Google Scholar 

  24. S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta, S. Arumainathan, Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci. Rep. 6, 31641 (2016). https://doi.org/10.1038/srep31641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Y. Wei, Q.A. Huang, M.G. Li et al., CeO2 nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine. Electrochim. Acta 56, 8571–8575 (2011)

    CAS  Google Scholar 

  26. M. Yang, P.H. Li, W.H. Xu et al., Reliable electrochemical sensing arsenic(III) in nearly groundwater pH based on efficient adsorption and excellent electrocatalytic ability of AuNPs/CeO2-ZrO2 nanocomposite. Sens. Actuators B Chem. 255, 226–234 (2018)

    CAS  Google Scholar 

  27. J.M. George, A. Antony, B. Mathew, Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim. Acta 185, 358 (2018)

    Google Scholar 

  28. F. Charbgoo, M. Ramezani, M. Darroudi, Bio-sensing applications of cerium oxide nanoparticles: advantages and disadvantages. Biosens. Bioelectron. 96, 33–43 (2017)

    CAS  PubMed  Google Scholar 

  29. W.X. Tang, P.X. Gao, Nanostructured cerium oxide: preparation, characterization and application in energy and environmental catalysis. MRS Commun. 6, 311–329 (2016)

    CAS  Google Scholar 

  30. J.A. Shirley, S.E. Florence, B.S. Sreeja, G. Padmalaya, S. Radha, Zinc oxide nanostructure-based textile pressure sensor for wearable applications. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-04206-9

    Article  Google Scholar 

  31. G. Padmalaya, B.S. Sreeja, S. Shoba et al., Synthesis of micro-dumbbell shaped rGO/ZnO composite rods and its application towards as electrochemical sensor for the simultaneous determination of ammonia and formaldehyde using hexamine and its structural analysis. J. Inorg. Organomet. Polym. Mater. 30, 943–954 (2020)

    CAS  Google Scholar 

  32. C. Wang, H. Fan, X. Ren, J. Fang, Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures. Appl. Phys. A 124, 99 (2018)

    CAS  Google Scholar 

  33. G. Padmalaya, B.S. Sreeja, M. Arivanandan, P. Senthil Kumar, Chitosan modified Zinc Oxide nanocomposite as modified electrochemical sensor for the detection of Cd (II) ions. Desalin. Water Treat. 97, 295–303 (2017)

    CAS  Google Scholar 

  34. O.H. Laguna, M.A. Centeno, F. Romero-Sarria, J.A. Odriozola, Oxidation of CO over gold supported on Zn-modified ceria catalysts. Catal. Today 172, 118–123 (2011)

    CAS  Google Scholar 

  35. S.B. Khan, M. Faisal, M.M. Rahman et al., Effect of particle size on the photocatalytic activity and sensing properties of CeO2 nanoparticles. Int. J. Electrochem. Sci. 8, 7284–7297 (2013)

    CAS  Google Scholar 

  36. L. Espinal, Porosity and Its Measurement- Common Concepts (Wiley, Hoboken, 2012).

    Google Scholar 

  37. O. Marin, G. Grinblat, A.M. Gennaro et al., On the origin of white photoluminescence from ZnO nanocones/porous silicon heterostructures at room temperature. Superlattices Microstruct. 79, 29–37 (2015)

    CAS  Google Scholar 

  38. G. Zhang, X. Shen, Y. Yang, Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. J. Phys. Chem. C 115, 7145–7152 (2011)

    CAS  Google Scholar 

  39. G. Sun, H. Liu, Y. Zhang, J. Yu et al., Gold nanorods-paper electrode based enzyme-free electrochemical immunoassay for prostate specific antigen using porous zinc oxide spheres–silver nanoparticles nanocomposites as labels. New J. Chem. 39, 6062–6067 (2015)

    CAS  Google Scholar 

  40. R. Imani, B. Drašler, V. Kononenko et al., Growth of a novel nanostructured ZnO urchin: control of cytotoxicity and dissolution of the ZnO urchin. Nanoscale Res. Lett. 10, 441 (2015)

    PubMed  PubMed Central  Google Scholar 

  41. F. Xu, P. Zhang, A. Navrotsky, Z.Y. Yuan et al., Hierarchically assembled porous ZnO nanoparticles: synthesis, surface energy and photocatalytic activity. Chem. Mater. 19, 5680–5686 (2007)

    CAS  Google Scholar 

  42. D. Visinescu, M.D. Hussien, J.C. Moreno et al., Zinc oxide spherical-shaped nanostructures: investigation of surface reactivity and interactions with microbial and mammalian cells. Langmuir 34, 13638–13651 (2018)

    CAS  PubMed  Google Scholar 

  43. T. Li, H. Bo, H. Cao, Y. Lai, Y. Liu, Carbon-coated aluminum foil as current collector for improving the performance of lithium sulfur batteries. Int. J. Electrochem. Sci. 12, 3099–3108 (2017)

    CAS  Google Scholar 

  44. M.J. Gira, K.P. Tkacz, J.R. Hampton, Physical and electrochemical area determination of electrodeposited Ni Co, and NiCo thin films. Nano Convergence (2016). https://doi.org/10.1186/s40580-016-0063-0

    Article  PubMed  PubMed Central  Google Scholar 

  45. Y. Uludag, Z. Olcer, M.S. Sagiroglu, Design and characterisation of a thin-film electrode array with shared reference/counter electrodes for electrochemical detection. Biosens. Bioelectron. 57, 85–90 (2014)

    CAS  PubMed  Google Scholar 

  46. R.M. Shereema, S.R. Nambiar, S.S. Shankar, T.P. Rao, CeO2-MWCNT nanocomposite based electrochemical sensor for acetaldehyde. Anal. Methods 7, 4912–4918 (2015)

    CAS  Google Scholar 

  47. J. Liao, J. Zhang, C.Z. Wang, S. Lin, Electrochemical and density functional theory investigation on the differential behaviors of core-ring structured NiCo2O4 nanoplatelets toward heavy metal ions. Anal. Chim. Acta 1022, 37–44 (2018)

    CAS  PubMed  Google Scholar 

  48. M.K. Bojdi, M.H. Mashhadizadeh, M. Behbahani, A. Farahani, S.S.H. Davarani, A. Bagheri, Synthesis, characterization and application of novel lead imprinted polymer nanoparticles as a high selective electrochemical sensor for ultra-trace determination of lead ions in complex matrixes. Electrochim. Acta 136, 59–65 (2014)

    CAS  Google Scholar 

  49. L. Yu, X. Cui, X. Yue, Z. Yu, A ratiometric electrochemical sensor for lead ions based on bismuth film coated porous silicon nanoparticles. New J. Chem. 44, 3255–3260 (2020)

    CAS  Google Scholar 

  50. S.F. Zhou, X.J. Han, H.L. Fan, J. Huang, Y.Q. Liu, Enhanced electrochemical performance for sensing Pb(II) based on graphene oxide incorporated mesoporous MnFe2O4 nanocomposites. J. Alloys Compds. 747, 447–454 (2018)

    CAS  Google Scholar 

  51. B. Maleki, M. Baghayeri, M.G. Motlagh, F.M. Zonoz, A. Amiri, F. Hajizadeh, A.R. Hosseinifar, E. Esmaeilnezhad, Polyamidoamine dendrimer functionalized iron oxide nanoparticles for simultaneous electrochemical detection of Pb2+ and Cd2+ ions in environmental waters. Measurement 140, 81–88 (2019)

    Google Scholar 

  52. G. Padmalaya, B.S. Sreeja, P.D. Kumar et al., A facile synthesis of cellulose acetate functionalized zinc oxide nanocomposite for electrochemical sensing of cadmium ions. J. Inorg. Organomet. Polym. Mater. 29, 989–999 (2019)

    CAS  Google Scholar 

  53. R. Archana, B.S. Sreeja, K.K. Nagarajan et al., Development of highly sensitive Ag NPs decorated graphene FET sensor for detection of glucose concentration. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01541-6

    Article  Google Scholar 

  54. B. Khatun, P. Baishya, A. Ramteke, T.K. Maji, Study of the complexation of structurally modified curcumin with hydroxypropyl beta cyclodextrin and its effect on anticancer activity. New J. Chem. 44, 4887–4897 (2020)

    CAS  Google Scholar 

  55. Z. Wei, L. Chen, D.M. Thompson, L.D. Montoya, Effect of particle size on in vitro cytotoxicity of titania and alumina nanoparticles. J. Exp. Nanosci. 9(625), 638 (2014)

    Google Scholar 

Download references

Acknowledgements

Authors provide sincere thanks to SSN trust for delivering financial support to carry out this work. Authors express their extended sole gratitude to SSN trust for awarding a fellowship. Also, authors provide honest and heartfelt thanks for rendering electrochemical facility by LABKARTS, tiruvottiyur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Saranya.

Ethics declarations

Conflict of interest

I declare that to the best of my knowledge and belief neither my co-authors have no conflict of interest. All the co-authors are well known about the research work presented in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranya, J., Sreeja, B.S., Padmalaya, G. et al. Microwave Thermally Assisted Porous Structured Cerium Oxide/Zinc Oxide Design: Fabrication, Electrochemical Activity Towards Pb Ions, Anticancer Assessment in HeLa and VERO Cell Lines. J Inorg Organomet Polym 31, 1279–1292 (2021). https://doi.org/10.1007/s10904-020-01809-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01809-x

Keywords

Navigation