Skip to main content
Log in

Microfluidic Assembly Synthesis of Magnetic TiO2@SiO2 Hybrid Photonic Crystal Microspheres for Photocatalytic Degradation of Deoxynivalenol

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Mycotoxin contamination is a serious threat to food safety and human health. The development of efficient degradation strategies targeting mycotoxins is valuable. In this paper, magnetic TiO2@SiO2 hybrid photonic crystal microspheres (MHPCMs) were designed and prepared by the water-in-oil droplet method through a simple two-phase home-made microfluidic device for the degradation of deoxynivalenol (DON), the most serious mycotoxin contaminating cereals and feeding samples among natural mycotoxins. The morphologies of the synthesized microspheres were investigated by both metallurgical microscope and scanning electronic microscope (SEM), confirming that MHPCMs have a spherical shape and regular photonic crystal nanostructures. In the self-assembly system, TiO2 and Fe3O4 nanoparticles were responsible to form photocatalytic sites and magnet response, respectively. The effect of the TiO2 and Fe3O4 contents in the microspheres on their morphology and photocatalytic degradation activity was studied in detail. Finally, the optimized MHPCM could degrade DON in water under the light irradiation and be recycled easily by magnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.M. Misihairabgwi, C.N. Ezekiel, M. Sulyok, G.S. Shephard, R. Krska, Mycotoxin contamination of foods in Southern Africa: a 10-year review (2007–2016). Crit Rev Food Sci 59(1), 43–58 (2019). https://doi.org/10.1080/10408398.2017.1357003

    Article  CAS  Google Scholar 

  2. F. Berthiller, M. Sulyok, R. Krska, R. Schuhmacher, Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals. Int J Food Microbiol 119(1–2), 33–37 (2007). https://doi.org/10.1016/j.ijfoodmicro.2007.07.022

    Article  CAS  PubMed  Google Scholar 

  3. J.W. Bennett, M. Klich, Mycotoxins. Clin Microbiol Rev 16(3), 497–516 (2003). https://doi.org/10.1128/Cmr.16.3.497-516.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H.K. Knutsen, J. Alexander, L. Barregard, M. Bignami, B. Bruschweiler et al., Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. Efsa J 15(9), 1–345 (2017). https://doi.org/10.2903/J.Efsa.2017.4718

    Article  Google Scholar 

  5. B.M. Flannerya, K.Y. He, J.J. Pestka, Deoxynivalenol-induced weight loss in the diet-induced obese mouse is reversible and PKR-independent. Toxicol Lett 221(1), 9–14 (2013). https://doi.org/10.1016/j.toxlet.2013.05.008

    Article  CAS  Google Scholar 

  6. I. Alassane-Kpembi, O. Puel, I.P. Oswald, Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch Toxicol 89(8), 1337–1346 (2015). https://doi.org/10.1007/s00204-014-1309-4

    Article  CAS  PubMed  Google Scholar 

  7. F.E. Wettstein, T.D. Bucheli, Poor elimination rates in waste water treatment plants lead to continuous emission of deoxynivalenol into the aquatic environment. Water Res 44(14), 4137–4142 (2010). https://doi.org/10.1016/j.watres.2010.05.038

    Article  CAS  PubMed  Google Scholar 

  8. D.R. Lauren, W.A. Smith, Stability of the Fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone in ground maize under typical cooking environments. Food Addit Contam 18(11), 1011–1016 (2001). https://doi.org/10.1080/02652030110052283

    Article  CAS  PubMed  Google Scholar 

  9. M.C. Gruda, K.G. Ruggeberg, P. O’Sullivan, T. Guliashvili, A.R. Scheirer et al., Broad adsorption of sepsis- related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb (R) sorbent porous polymer beads. PLoS ONE 13(1), e0191676 (2018). https://doi.org/10.1371/journal.pone.0191676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J.M. Gonzalez-Jartin, L.D. Alves, A. Alfons, Y. Pineiro, S.Y. Vilar et al., Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food. Food Chem 294, 60–66 (2019). https://doi.org/10.1016/j.foodchem.2019.05.013

    Article  CAS  PubMed  Google Scholar 

  11. Y.H. Cheng, M.H. Chang, Y.A. Lin, J.F. Wu, B.J. Chen, Effects of deoxynivalenol and degradation enzyme on growth performance and immune responses in mule ducks. J Anim Feed Sci 13(2), 275–287 (2004)

    Article  CAS  Google Scholar 

  12. A.C.P. Feltrin, S.D. Garcia, S.S. Caldas, E.G. Primel, E. Badiale-Furlong, J. Garda-Buffon, Characterization and application of the enzyme peroxidase to the degradation of the mycotoxin DON. J Environ Sci Heal B 52(10), 777–783 (2017). https://doi.org/10.1080/03601234.2017.1356672

    Article  CAS  Google Scholar 

  13. S.L. Xiong, X. Li, C.S. Zhao, J.Q. Gao, W.J. Yuan, J. Zhang, The degradation of deoxynivalenol by using electrochemical oxidation with graphite electrodes and the toxicity assessment of degradation products. Toxins 11(8), 478 (2019). https://doi.org/10.3390/Toxins11080478

    Article  CAS  PubMed Central  Google Scholar 

  14. R.Y. Zhu, K. Feussner, T. Wu, F.J. Yan, P. Karlovsky, X.D. Zheng, Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum. Food Chem 179, 1–5 (2015). https://doi.org/10.1016/j.foodchem.2015.01.066

    Article  CAS  PubMed  Google Scholar 

  15. G. Wang, Y.X. Wang, F. Ji, L.M. Xu, M.Z. Yu et al., Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16. Food Chem 276, 436–442 (2019). https://doi.org/10.1016/j.foodchem.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  16. J. Zhang, Y. Liu, Q. Li, X. Zhang, J.K. Shang, Antifungal activity and mechanism of palladium-modified nitrogen-doped titanium oxide photocatalyst on agricultural pathogenic fungi Fusarium graminearum. Acs Appl Mater Inter 5(21), 10953–10959 (2013). https://doi.org/10.1021/am4031196

    Article  CAS  Google Scholar 

  17. S.M. Sun, R. Zhao, Y.L. Xie, Y. Liu, Photocatalytic degradation of aflatoxin B-1 by activated carbon supported TiO2 catalyst. Food Control 100, 183–188 (2019). https://doi.org/10.1016/j.foodcont.2019.01.014

    Article  CAS  Google Scholar 

  18. H.T. Wang, J. Mao, Z.W. Zhang, Q. Zhang, L.X. Zhang et al., Photocatalytic degradation of deoxynivalenol over dendritic-like -Fe2O3 under visible light irradiation. Toxins 11(2), 105 (2019). https://doi.org/10.3390/Toxins11020105

    Article  CAS  PubMed Central  Google Scholar 

  19. X.J. Bai, H.Y. Li, Z.Y. Zhang, X.R. Zhang, C. Wang et al., Carbon nitride nested tubes with graphene as a dual electron mediator in Z-scheme photocatalytic deoxynivalenol degradation. Catal Sci Technol 9(7), 1680–1690 (2019). https://doi.org/10.1039/c9cy00209j

    Article  CAS  Google Scholar 

  20. Y. Zhou, S. Wu, F. Wang, Q. Li, C. He et al., Assessing the toxicity in vitro of degradation products from deoxynivalenol photocatalytic degradation by using upconversion nanoparticles@TiO2 composite. Chemosphere 238, 124648 (2020). https://doi.org/10.1016/j.chemosphere.2019.124648

    Article  CAS  PubMed  Google Scholar 

  21. X.J. Bai, C.P. Sun, D. Liu, X.H. Luo, D. Li et al., Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Appl Catal B 204, 11–20 (2017). https://doi.org/10.1016/j.apcatb.2016.11.010

    Article  CAS  Google Scholar 

  22. Q. Yang, M.Z. Li, J. Liu, W.Z. Shen, C.Q. Ye et al., Hierarchical TiO2 photonic crystal spheres prepared by spray drying for highly efficient photocatalysis. J Mater Chem A 1(3), 541–547 (2013). https://doi.org/10.1039/c2ta00060a

    Article  CAS  Google Scholar 

  23. B.F. Xin, Z.Y. Ren, P. Wang, J. Liu, L.Q. Jing, H.G. Fu, Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+-TiO2 photocatalysts. Appl Surf Sci 253(9), 4390–4395 (2007). https://doi.org/10.1016/j.apsusc.2006.09.049

    Article  CAS  Google Scholar 

  24. A.M. El Nahrawy, A.B. Abou Hammad, A.M. Bakr, T.I. Shaheen, A.M. Mansour, Sol–gel synthesis and physical characterization of high impact polystyrene nanocomposites based on Fe(2)O(3)doped with ZnO. Appl Phys A (2020). https://doi.org/10.1007/s00339-020-03822-w

    Article  Google Scholar 

  25. H. Inan, M. Poyraz, F. Inci, M.A. Lifson, M. Baday et al., Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev 46(2), 366–388 (2017). https://doi.org/10.1039/c6cs00206d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. W. Li, X.R. Zhu, X. Wang, J. Liu, B.W. Liang et al., A rapid, sensitive and real-time monitoring of alcohol content in spirit sample based on stable TiO2-coated porous silicon interferometer. Sensor Actuat B 281, 359–365 (2019). https://doi.org/10.1016/j.snb.2018.10.106

    Article  CAS  Google Scholar 

  27. J. Xu, W. Li, R. Liu, Y. Yang, Q.X. Lin et al., Ultrasensitive low-background multiplex mycotoxin chemiluminescence immunoassay by silica-hydrogel photonic crystal microsphere suspension arrays in cereal samples. Sensor Actuat B-Chem 232, 577–584 (2016). https://doi.org/10.1016/j.snb.2016.03.123

    Article  CAS  Google Scholar 

  28. J. Yu, J.Y. Lei, L.Z. Wang, J.L. Zhang, Y.D. Liu, TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - A review. J Alloy Compd 769, 740–757 (2018). https://doi.org/10.1016/j.jallcom.2018.07.357

    Article  CAS  Google Scholar 

  29. K. Hou, W. Ali, J.W. Lv, J. Guo, L. Shi et al., Optically active inverse opal photonic crystals. J Am Chem Soc 140(48), 16446–16449 (2018). https://doi.org/10.1021/jacs.8b10977

    Article  CAS  PubMed  Google Scholar 

  30. Y.Q. Zhang, L.D. Mu, R. Zhou, P. Li, J.Q. Liu et al., Fluoral-p infiltrated SiO2 inverse opal photonic crystals as fluorescent film sensors for detecting formaldehyde vapor. J Mater Chem C 4(41), 9841–9847 (2016). https://doi.org/10.1039/c6tc03862j

    Article  CAS  Google Scholar 

  31. L. Zhou, J. Lei, L. Wang, Y. Liu, J. Zhang, Highly efficient photo-Fenton degradation of methyl orange facilitated by slow light effect and hierarchical porous structure of Fe2O3-SiO2 photonic crystals. Appl Catal B 237, 1160–1167 (2018). https://doi.org/10.1016/j.apcatb.2017.08.039

    Article  CAS  Google Scholar 

  32. X. Zheng, D. Li, X. Li, L. Yu, P. Wang et al., Photoelectrocatalytic degradation of rhodamine B on TiO2 photonic crystals. Phys Chem Chem Phys 16(29), 15299–15306 (2014). https://doi.org/10.1039/c4cp01888e

    Article  CAS  PubMed  Google Scholar 

  33. S. Meng, D. Li, P. Wang, X. Zheng, J. Wang et al., Probing photonic effect on photocatalytic degradation of dyes based on 3D inverse opal ZnO photonic crystal. RSC Adv 3(38), 17021–17028 (2013). https://doi.org/10.1039/c3ra42618a

    Article  CAS  Google Scholar 

  34. S.J. Wu, F. Wang, Q. Li, J. Wang, Y. Zhou et al., Photocatalysis and degradation products identification of deoxynivalenol in wheat using upconversion nanoparticles@TiO2 composite. Food Chem (2020). https://doi.org/10.1016/j.foodchem.2020.126823

    Article  PubMed  PubMed Central  Google Scholar 

  35. L. Chen, Y.Z. Li, Y.B. Sun, Y. Chen, J.S. Qian, La(OH)(3) loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability. Chem Eng J 360, 342–348 (2019). https://doi.org/10.1016/j.cej.2018.11.234

    Article  CAS  Google Scholar 

  36. J.S. Fang, Y.W. Zhang, Y.M. Zhou, S. Zhao, C. Zhang et al., Synthesis of novel ultrasmall Au-loaded magnetic SiO2/carbon yolk-shell ellipsoids as highly reactive and recoverable nanocatalysts. Carbon 121, 602–611 (2017). https://doi.org/10.1016/j.carbon.2017.06.022

    Article  CAS  Google Scholar 

  37. R. Kaplan, B. Erjavec, G. Drazic, J. Grdadolnik, A. Pintar, Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl Catal B 181, 465–474 (2016). https://doi.org/10.1016/j.apcatb.2015.08.027

    Article  CAS  Google Scholar 

  38. N. Mandzy, E. Grulke, T. Druffel, Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160(2), 121–126 (2005). https://doi.org/10.1016/j.powtec.2005.08.020

    Article  CAS  Google Scholar 

  39. L.J. Duan, N. Jiang, N. Lu, K.F. Shang, J. Li, Y. Wu, Synergetic effect of TiO2 and Fe3+ as co-catalysts for enhanced phenol degradation in pulsed discharge system. Appl Catal B 221, 521–529 (2018). https://doi.org/10.1016/j.apcatb.2017.09.047

    Article  CAS  Google Scholar 

  40. C. Wang, H.S. Shi, Y. Li, Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Appl Surf Sci 257(15), 6873–6877 (2011). https://doi.org/10.1016/j.apsusc.2011.03.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was funded by National Natural Science Foundation of China (Grant Nos. 31471642, 31071542 and 21705073), the Pig Innovation Team Plan of Modern Agricultural Technology System of Shandong Province (Grant No. SDAIT-08-17), and the National Key Research and Development Project of China (Grant No. 2019YFC1606404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Li.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Deng, Y., Dai, S. et al. Microfluidic Assembly Synthesis of Magnetic TiO2@SiO2 Hybrid Photonic Crystal Microspheres for Photocatalytic Degradation of Deoxynivalenol. J Inorg Organomet Polym 31, 2360–2367 (2021). https://doi.org/10.1007/s10904-020-01806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01806-0

Keywords

Navigation