Skip to main content
Log in

Conventional and Current Methods of Toxic Metals Removal from Water Using g-C3N4-Based Materials

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The concentration of toxic metal ions in wastewater continues to increase as a result of the increasing number of industries, and the discharge of their heavy metal-containing wastes directly into water bodies without proper treatment. These heavy metals are highly toxic and difficult to degrade, which makes the treatment and re-use of the wastewater to be very challenging. Several methods have been explored for their removal from water in order to improve on water availability. However, these conventional methods cannot transform the heavy metal ions to a less toxic species, instead they are transferred from one phase to another, which may lead to secondary pollution. In this review, the conventional techniques that have been explored for the removal of heavy metal ions were examined and their merits and demerits were highlighted. Recent advancement involving the use of composites containing graphitic carbon nitride photocatalysts were discussed as viable alternative for the conventional methods. The mechanism of photocatalytic removal of heavy metal ions and methods of synthesizing the g-C3N4 composites were discussed. Furthermore, the chemistry of heavy metal ion transformation, their toxicity and routes of exposure were studied. Finally, the problems associated with the fabrication of the composites were critically examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.F. Tchobanoglous, H.D. Stensel, Wastewater Engineering Treatment and Reuse (Mcgraw-Hill, New York, 2003)

    Google Scholar 

  2. J.O. Nriagu, A silent epidemic of environmental metal poisoning? Environ. Pollut. 50, 139 (1988)

    CAS  PubMed  Google Scholar 

  3. M.I. Litter, Treatment of chromium, mercury, lead, uranium, and arsenic in water by heterogeneous photocatalysis. Adv. Chem. Eng. Photocatal. Technol. 36, 37–67 (2009)

    CAS  Google Scholar 

  4. E. Charney, M. Coulter, Increased lead absorption in inner city children: where does the lead come from? Pediatrics 6, 226–231 (1980)

    Google Scholar 

  5. L. International Agency for Research on Cancer (IARC), France, Overall Evaluation of Carcinogenicity: An updating of Monographs (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Lyon, 1987)

    Google Scholar 

  6. IARC, Monographs-International Agency for Research on Cancer, Cadmium (IARC, Lyon, 1993)

    Google Scholar 

  7. R. Gautam, S. Sharma, S. Mahiya, M. Chattopadhyaya, Heavy Metals In Water : Presence, Removal and Safety (Royal Society of Chemistry, London, 2014)

    Google Scholar 

  8. H. Särkkä, A. Bhatnagar, M. Sillanpää, Recent developments of electro-oxidation in water treatment: a review. J. Electroanal. Chem. 754, 46–56 (2015)

    Google Scholar 

  9. A. Ms, A. Hasan, Removal of heavy metals from industrial waste water by biomass-based materials: a review. J. Pollut. Effects Control 05, 1–13 (2016)

    Google Scholar 

  10. T. Pb, A.K. Patlolla, J.A. Centeno, Carcinogenic and systemic health effects associated with arsenic exposure-a critical review. Toxicol. Pathol. 31, 575–588 (2003)

    Google Scholar 

  11. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment. Exp. Suppl. 101, 133–164 (2012)

    PubMed  Google Scholar 

  12. W.B. Tchounwou, P.B. Abdelgnani, A.A. Ishaque, A.B. Patlolla, Differential cytotoxicity and gene expression in human liver carcinoma (HepG2) cells exposed to arsenic trioxide and monosodium acid methanearsonate (MSMA). Int. J. Mol. Sci. 3, 1117–1132 (2002)

    CAS  Google Scholar 

  13. C.J. Tchounwou, P.B. Patlolla, Arsenic toxicity, mutagenesis and carcinogenesis - a health risk assessment and management approach. Mol Cell Biochem. 255, 47–55 (2004)

    CAS  PubMed  Google Scholar 

  14. R.I.K. Goyer, Toxic effects of metals, in Cassarett and Doull’s Toxicology, ed. by K.K. Rozman, C.D. Klaassen (McGraw-Hill, New York, 2001), pp. 811–867

    Google Scholar 

  15. M.F. Hughes, Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 133, 1–16 (2002)

    CAS  PubMed  Google Scholar 

  16. R.C. Baselt, Disposition of Toxic Drugs and Chemicals in Man (Medical Publishers, Chicago, 1995)

    Google Scholar 

  17. M.Z. Singhal, P.D. Hrdina, Aspects of the biochemical toxicology of cadmium. Fed. Proc. 35, 75–80 (1976)

    CAS  PubMed  Google Scholar 

  18. I.M. Adesiyan, M. Bisi-Johnson, O.T. Aladesanmi, A.I. Okoh, A.O. Ogunfowokan, Concentrations and human health risk of heavy metals in rivers in southwest Nigeria. J. Health Pollut. 8, 180907–180907 (2018)

    PubMed  PubMed Central  Google Scholar 

  19. J.A. Jacobs, S.M. Testa, Overview of chromium(VI) in the environment: background and history (CRC Press, Boca Raton, 2005)

    Google Scholar 

  20. A. Patlolla, C. Yedjou, V. Velma, P.B. Tchounwou, Oxidative stress, DNA damage and antioxidant enzyme activity induced by hexavalent chromium in Sprague Dawley rats. Environ. Toxicol. 24, 66–73 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Agency for Toxic Substances and Disease Registry (ATSDR). Atlanta, Toxicological Profile for Chromium, U.S. Department of Health and Human Services, Public Health Service

  22. V. Velma, P.B. Tchounwou, Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev. Environ. Health 24, 129–145 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. S.R. Shelnutt, D.V. Belsito, Dermatological toxicity of hexavalent chromium. Crit. Rev. Toxicol. 37, 375–387 (2007)

    CAS  PubMed  Google Scholar 

  24. S. WHO/IPCS. World Health Organization. Geneva, Environmental Health Criteria 61:Chromium, (1988)

  25. B.P. Lanphear, J. Rogers et al., The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels. A pooled analysis of 12 epidemiologic studies. Environ. Res. 79, 51–68 (1998)

    CAS  PubMed  Google Scholar 

  26. A.f.T.S.a.D.R.A.P.H.S. Atlanta:, Toxicological Profile for Lead., U.S. Department of Health and Human Services (1999)

  27. K.P. Apostoli, P. Stefano, J.P. Bonde, M. Vanhoorne, Male reproduction toxicity of lead in animals and humans. Occup. Environ. Med. 55(1998), 364–374 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. WHO, Progress on drinking-water, sanitation and hygiene (2017)

  29. L.H. Lash, S.E. Hueni, S.G. Payton, J. Zwicki, Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules (Effects of apoptosis, necrosis, and glutathione status). Toxicol. Appl. Pharmacol. 221, 349–362 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. M.I. Amorim, M.O. Bahia, H. Miranda, Lebel cytogenetic damage related to low levels of methylmercury contamination in the Brazilian Amazon. J. Ann. Acad. Bras Cienc 72, 497–507 (2000)

    CAS  Google Scholar 

  31. M. Valko, J. Monocol, M. Izakovic-Mazur, Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interac. 160, 1–40 (2006)

    CAS  Google Scholar 

  32. U. Farooq, J.A. Kozinski, M.A. Khan, M. Athar, Biosorption of heavy metal ions using wheat based biosorbents–a review of the recent literature. Bioresour. Technol. 101, 5043–5053 (2010)

    CAS  PubMed  Google Scholar 

  33. V. Masindi, K.L. Muedi, Environmental Contamination by Heavy Metals. Heavy Metals (2018)

  34. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92, 407–418 (2011)

    CAS  PubMed  Google Scholar 

  35. M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical precipitation of heavy metals from acid mine drainage. Water Res. 36, 4757–4764 (2002)

    CAS  PubMed  Google Scholar 

  36. F.L. Fu, H.Y. Zeng, Q.H. Cai, R.L. Qiu, J. Yu, Y. Xiong, Effective removal of coordinated copper from waste water using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere 69, 1783–1789 (2007)

    CAS  PubMed  Google Scholar 

  37. M.T. Alvarez, C. Crespo, B. Mattiasson, Precipitation of Zinc(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulphide from utilization of volatile fatty acids. Chemosphere 66, 1677–1783 (2007)

    CAS  PubMed  Google Scholar 

  38. Q.Y. Chen, Z. Luo, C. Hills, G. Xue, M. Tyrer, Precipitation of heavymetals from waste water using siulated flue gas. Water Res. 43, 2605–2614 (2009)

    CAS  PubMed  Google Scholar 

  39. Renu, M. Agarwal, K. Singh, Methodologies for removal of heavy metal ions from wastewater: an overview. Interdiscip. Environ. Rev. 18, 124 (2017)

    Google Scholar 

  40. B.Y. Medina, M.I. Torem, L.M.S. de Mesquita, Kinetics of the precipitate flotation of Cr(III) using sodium dodecylsulphate and ethanol. Miner. Eng. 18, 225–231 (2005)

    CAS  Google Scholar 

  41. X.Z. Yuan, Y.T. Meng, G.M. Zeng, Y.Y. Fang, Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute waste water by ion flotation. Colloid Surf. 317, 256–261 (2008)

    CAS  Google Scholar 

  42. F. Tessele, M. Misra, J. Rubio, Removal of Hg, As and Se ions from gold cyanide leach solution by dissolved air flotation. Miner. Eng. 11, 535–543 (1998)

    CAS  Google Scholar 

  43. H.Y. Shim et al., Application of electrocoagulation and electrolysis on the precipitation of heavy metals and particulate solids in washwater from the soil washing. J. Agric. Chem. Environ. 3, 130 (2014)

    Google Scholar 

  44. S.K. Gunatilake, Methods of removing heavy metals from industrial wastewater. J. Multidiscip. Eng. Sci. Stud. (JMESS) 1, 12–18 (2015)

    Google Scholar 

  45. J.R. Parga, D.L. Cocke, J.I. Valenzuela, J.A. Gomes, M. Kesmes, H. Moreno, M. Weir, Arsenic removal via electrocoagulation from heavy metal contaminated water in La Comarca Mexico. J. Hazard Mater. 124, 247–254 (2005)

    CAS  PubMed  Google Scholar 

  46. T. Olmez, The optimization of Cr(VI) reduction and removal by electrocogulation using response surface methodology. J. Hazard. Mater. 162, 1371–1378 (2009)

    CAS  PubMed  Google Scholar 

  47. D. Lakherwal, Adsorption of heavy metal: a review. Int. J. Environ. Res. Dev. 4, 41–48 (2014)

    Google Scholar 

  48. A. Kongsuwan, P. Patnukao, Binary component sorption of Cu(II) and Pb(II) with activated carbon from Eucalyptus camaldulensis bark. J. Ind. Eng. Chem. 15, 465–470 (2009)

    CAS  Google Scholar 

  49. M.K. Doula, Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res. (Oxford) 43, 3659–3672 (2009)

    CAS  Google Scholar 

  50. H.N. Muhammad Ekramul Mahmud, A.K.O. Huq, R.B. Yahya, The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv. 6, 14778–14791 (2016)

    CAS  Google Scholar 

  51. S. Tamjidi, H. Esmaeili, B. Kamyab Moghadas, Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Mater. Res. Express 6, 102004 (2019)

    CAS  Google Scholar 

  52. C. Popa, P. Bulai, M. Macoveanu, The study of iron (II) removal from 34% calcium chloride solutions by chelating resin purolite S930. Environ. Eng. Manage. J. 9, 651–658 (2010)

    CAS  Google Scholar 

  53. F.M. Pang, P. Kumar, T.T. Teng, A.M. Omar, K.L. Wasewar, Removal of lead, zinc and iron by coagulation-flocculation’. J. Taiwan Inst. Chem. Eng. 42, 809–815 (2011)

    CAS  Google Scholar 

  54. L.C. Shen, X.T. Nguyen, N.P. Hankins, Removal of heavy metal ions from dilute aqueous solutions by polymer-surfactant aggregates: a novel effluent treatment process. Sep. Purif. Technol. 152, 101–107 (2015)

    CAS  Google Scholar 

  55. W.P. Zhu, S.P. Sun, J. Gao, F.J. Fu, T.S. Chung, Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. J. Membr. Sci. 456, 117–127 (2014)

    CAS  Google Scholar 

  56. B.A.M. Al-Rashdi, D.J. Johnson, N. Hilal, Removal of heavy metal ions by nanofiltration. Desalination 315, 2–17 (2013)

    CAS  Google Scholar 

  57. T. Oppenlander, Photochemical Purification of Water and Air.pdf, WILEY_VCH Verlag, (2003)

  58. M.I. Litter, Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. Pure Appl. Chem. 87, 557–567 (2015)

    CAS  Google Scholar 

  59. M.I. Litter, The Handbook of Environmental Chemistry, in Reactions and Processes, Part M., “Introduction to photochemical advanced oxidation processes for water treatment”, The Handbook of Environmental Chemistry, Environmental Photochemistry Part II, ed. by P. Boule, D.W. Bahnemann, P.K.J. Robertson (Springer, Berlin, 2005)

    Google Scholar 

  60. S.E. Braslavsky, A.V. Emeline, M.I. Litter, L. Palmisano, V.N. Parmon, N. Serpone, Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Chem. Pure Appl. 83, 931 (2011)

    CAS  Google Scholar 

  61. M.I. Litter-, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl. Catal. B 23, 89–114 (1999)

    CAS  Google Scholar 

  62. J.A.B.K. Niki, N.R. Parsons, J. Jordan (eds.), Chromium in Standard Potentials in Aqueous Solution (Marcel Dekker, Inc., New York, 1985)

    Google Scholar 

  63. J.A. Navı́o, G. Colon, M.A. Trillas, J. Peral, X. Domènech, J.J. Testa, J. Padrón, D.D. Rodrı́guez D, Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. Appl. Catal. B 16, 187–196 (1998)

    Google Scholar 

  64. M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Catal. B 23, 89–114 (1999)

    CAS  Google Scholar 

  65. J. Shen, J. Xue, Z. Chen, J. Ni, B. Tang, G. He, H. Chen, One-step hydrothermal synthesis of peony-like Ag/Bi2WO6 as efficient visible light-driven photocatalyst toward organic pollutants degradation. J. Mater. Sci. 53, 4848–4860 (2018)

    CAS  Google Scholar 

  66. K. Prasad, J.P. Shukla, Fluoride behaviour analysis in groundwater with reference to hydrogeochemical parameters in basaltic aquifers using remote sensing and GIS technique in parts of Burhner watershed, MP, India. J. Earth Syst. Sci. 128, 220 (2019)

    Google Scholar 

  67. N. Rivera-Reyna, L. Hinojosa-Reyes, J.L. Guzmán-Mar, Y. Cai, K. O’Shea, A. Hernández-Ramírez, Photocatalytical removal of inorganic and organic arsenic species from aqueous solution using zinc oxide semiconductor. Photochem. Photobiol. Sci. 12, 653–659 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. O. Stroyuk, V. Shvalagin, O. Raievska, A. Korzhak, S. Kuchmii, Photocatalysis of the reduction of Cd2 + Ions by CdS nanoparticles in isopropyl alcohol. Theoret. Exp. Chem. 39, 341–346 (2003)

    CAS  Google Scholar 

  69. S. Azzaza, R.T. Kumar, J.J. Vijaya, M. Bououdina, CHAPTER 7. Nanomaterials for Heavy Metal Removal, Advanced Environmental Analysis (RSC Publishing, Cambridge, 2016), pp. 139–166

    Google Scholar 

  70. W. Choi, J.Y. Choi, H. Song, Regulation of electron-hole recombination kinetics on uniform metal-semiconductor nanostructures for photocatalytic hydrogen evolution. APL Mater. 7, 100702 (2019)

    Google Scholar 

  71. L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B 217, 388–406 (2017)

    CAS  Google Scholar 

  72. F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.-K. Ho, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces. 5, 11392–11401 (2013)

    CAS  PubMed  Google Scholar 

  73. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, Self-doped Ti3 + enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856–11857 (2010)

    CAS  PubMed  Google Scholar 

  74. M.F.R. Samsudin, B.H. Hameed, Epigrammatic progress and perspective on the photocatalytic properties of BiVO4-based photocatalyst in photocatalytic water treatment technology: A review. J. Mol. Liquids 268, 438–459 (2018)

    CAS  Google Scholar 

  75. ATSDR, Toxicological profile for Chromium., Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service (2012)

  76. T.O. Ajiboye, A.T. Kuvarega, D.C. Onwudiwe, Graphitic carbon nitride-based catalysts and their applications: a review. Nano-Struct. Nano-Objects 24, 100577 (2020)

    Google Scholar 

  77. C.H. Nguyen, H.N. Tran, C.-C. Fu, Y.-T. Lu, R.-S. Juang, Roles of adsorption and photocatalysis in removing organic pollutants from water by activated carbon–supported titania composites: kinetic aspects. J. Taiwan Inst. Chem. Eng. 109, 51–61 (2020)

    CAS  Google Scholar 

  78. M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie, K. Hashimoto, Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys. Chem. Chem. Phys. 6, 865–870 (2004)

    CAS  Google Scholar 

  79. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)

    CAS  PubMed  Google Scholar 

  80. S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015)

    CAS  PubMed  Google Scholar 

  81. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326–8339 (2013)

    CAS  PubMed  Google Scholar 

  82. P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920 (2014)

    CAS  PubMed  Google Scholar 

  83. F.C. Shi, L. Chen, M. Jiang, A g-C3N4/nanocarbon/ZnIn2S4 nanocomposite: an artificial z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator. Chem. Commun. 51, 17144–17147 (2015)

    CAS  Google Scholar 

  84. Y.-P.R. Yuan, L.-W. Barber, J. JoachimLoo, S.C. Xue, Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ. Sci. 7, 3934–3951 (2014)

    CAS  Google Scholar 

  85. L. Li, P.A. Salvador, G.S. Rohrer, Photocatalysts with internal electric fields. Nanoscale 6, 24–42 (2014)

    PubMed  Google Scholar 

  86. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017)

    Google Scholar 

  87. J. Liu, L. Ruan, S.B. Adeloju, Y. Wu, BiOI/TiO 2 nanotube arrays, a unique flake-tube structured p–n junction with remarkable visible-light photoelectrocatalytic performance and stability. Dalton Trans. 43, 1706–1715 (2014)

    CAS  PubMed  Google Scholar 

  88. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2, 2915–2923 (2010)

    CAS  PubMed  Google Scholar 

  89. Y. Peng, M. Yan, Q.-G. Chen, C.-M. Fan, H.-Y. Zhou, A.-W. Xu, Novel one-dimensional Bi 2 O 3–Bi 2 WO 6 p–n hierarchical heterojunction with enhanced photocatalytic activity. J. Mater. Chem. A 2, 8517–8524 (2014)

    CAS  Google Scholar 

  90. P. Babu, S. Mohanty, B. Naik, K. Parida, Synergistic effects of boron and sulfur co-doping into graphitic carbon nitride framework for enhanced photocatalytic activity in visible light driven hydrogen generation. ACS Appl. Energy Mater. 1, 5936–5947 (2018)

    Google Scholar 

  91. P. Babu, S. Mohanty, B. Naik, K. Parida, Serendipitous assembly of mixed phase BiVO4 on B-Doped g-C3N4: an appropriate p–n heterojunction for photocatalytic O2 evolution and Cr(VI) reduction. Inorg. Chem. 58, 12480–12491 (2019)

    CAS  PubMed  Google Scholar 

  92. B. Chai, J. Yan, G. Fan, G. Song, C. Wang, In situ fabrication of CdMoO4/g-C3N4 composites with improved charge separation and photocatalytic activity under visible light irradiation. Chin. J. Catal. 41, 170–179 (2020)

    CAS  Google Scholar 

  93. S. Patnaik, S. Martha, G. Madras, K. Parida, The effect of sulfate pre-treatment to improve the deposition of Au-nanoparticles in a gold-modified sulfated gC 3 N 4 plasmonic photocatalyst towards visible light induced water reduction reaction. Phys. Chem. Chem. Phys. 18, 28502–28514 (2016)

    CAS  PubMed  Google Scholar 

  94. X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. (2020). https://doi.org/10.1080/10643389.2020.1734433

    Article  Google Scholar 

  95. Z. Chen, S. Zhang, Y. Liu, N.S. Alharbi, S.O. Rabah, S. Wang, X. Wang, Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Sci. Total Environ. 731, 139054 (2020)

    CAS  PubMed  Google Scholar 

  96. Q.W.A.J.W. Jianlin Li, Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods, Handbook of Nanoparticles Springer International Publishing Switzerland (2015)

  97. D.W. Kweku, Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications nanoscale. Res. Lett. 13, 388 (2018)

    Google Scholar 

  98. R.C. Dante, A. Correa-Guimaraes, J. Martin-Gil, Synthesis of graphitic carbon nitride by reaction of melamine and uric acid. Mater. Chem. Phys. 130, 1094–1102 (2011)

    CAS  Google Scholar 

  99. V. Laget, P. Rabu, M. Drillon, P. Turek, R. Ziessel, Multilayered ferromagnets based on hybrid organic–inorganic derivatives. Adv. Mater. 10, 1024–1028 (1998)

    CAS  Google Scholar 

  100. C. Hu, M.S. Wang, W. Xiao-Han, Rapid synthesis of g-C3N4 spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity. J. Photochem. Photobiol. A 348, 8–17 (2017)

    CAS  Google Scholar 

  101. C. Niu, C.M. Lieber, Experimental realization of the covalent solid carbon nitride. Science 261, 334–337 (1993)

    CAS  PubMed  Google Scholar 

  102. D. Jiang, J. Li, C. Xing, Z. Zhang, S. Meng, M. Chen, Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight. ACS Appl. Mater. Interfaces. 7, 19234–19242 (2015)

    CAS  PubMed  Google Scholar 

  103. Z. Liu, Z. Xu, Z. Zhang, D. Ao, Fabrication of ZnIn2S4-g-C3N4 sheet-on-sheet nanocomposites for efficient visiblelight photocatalytic H2-evolution and degradation of organic pollutants. RSC Adv. 5, 97951–97961 (2015)

    CAS  Google Scholar 

  104. Z. Liu, Z. Xu, Hybridization of Cd0.2Zn0.8S with gC3N4 nanosheets: a visible-light-driven photocatalyst for H2 evolution from water and degradation of organic pollutants. Dalton Trans. 44, 14368–14375 (2015)

    CAS  PubMed  Google Scholar 

  105. Y.F. Cui, H.Y. Yin, X.C. Song, Novel C3N4/Zn1-xCdxS heterostructures with adjustment of the band gap and their visible light photocatalytic properties. Phys. Chem. 17, 29354–29362 (2015)

    CAS  Google Scholar 

  106. Z.H.U. Hong-Tao, W. Jia-Qi, L.I. Xing, W. Xiang-Xue, Recent advances in carbon nitride-based nanomaterials for the removal of heavy metal ions from aqueous solution. J. Inorganic Mater. 35, 260–270 (2019)

    Google Scholar 

  107. W. Shen, Alginate modified graphitic carbon nitride composite hydrogels for efficient removal of Pb(II), Ni(II) and Cu(II) from water. Int. J. Biol. Macromol. 148, 1298–1306 (2020)

    CAS  PubMed  Google Scholar 

  108. Z. Liu, Y. Fang, H. Jia, C. Wang, Q. Song, L. Li, J. Lin, Y. Huang, C. Yu, C. Tang, Novel multifunctional cheese-like 3D carbon-BN as a highly efficient adsorbent for water purification. Sci. Rep. 8, 1104 (2018)

    PubMed  PubMed Central  Google Scholar 

  109. R. Beygli, N. Mohaghegh, E. Rahimi, Metal ion adsorption from wastewater by g-C3N4 modified with hydroxyapatite: a case study from Sarcheshmeh Acid Mine Drainage. Res. Chem. Interm. 45, 2255–2268 (2019)

    Google Scholar 

  110. R. Hu, X. Wang, S. Dai, D. Shao, T. Hayat, A. Alsaedi, Application of graphitic carbon nitride for the removal of Pb(II) and aniline from aqueous solutions. Chem. Eng. J. 260, 469–477 (2015)

    CAS  Google Scholar 

  111. A. Akbari Dehkharghani, Exfoliated graphitic carbon nitride for the fast adsorption of metal ions from acid mine drainage: a case study from the sungun copper mine. Mine Water Environ. 38, 335–341 (2019)

    Google Scholar 

  112. D. Peng, W. Jiang, F.-F. Li, L. Zhang, R.-P. Liang, J.-D. Qiu, One-pot synthesis of boron carbon nitride nanosheets for facile and efficient heavy metal ions removal. ACS Sustain. Chem. Eng. 6, 11685–11694 (2018)

    CAS  Google Scholar 

  113. W. Song, P. Ge, Q. Ke, Y. Sun, F. Chen, H. Wang, Y. Shi, X.-L. Wu, H. Lin, J. Chen, C. Shen, Insight into the mechanisms for hexavalent chromium reduction and sulfisoxazole degradation catalyzed by graphitic carbon nitride: the Yin and Yang in the photo-assisted processes. Chemosphere 221, 166–174 (2019)

    CAS  PubMed  Google Scholar 

  114. G. Dong, L. Zhang, Synthesis and enhanced Cr(VI) photoreduction property of formate anion containing graphitic carbon nitride. J. Phys. Chem. C 117, 4062–4068 (2013)

    CAS  Google Scholar 

  115. X. Wang, L. Li, J. Meng, P. Xia, Y. Yang, Y. Guo, Enhanced simulated sunlight photocatalytic reduction of an aqueous hexavalent chromium over hydroxyl-modified graphitic carbon nitride. Appl. Surf. Sci. 506, 144181 (2020)

    CAS  Google Scholar 

  116. X. Yan, G. Ning, P. Zhao, enhanced visible light photocatalytic reduction ofCr(VI) over a novel square nanotube poly(triazineimide)/TiO2 heterojunction. Catalysts 9, 55 (2019)

    Google Scholar 

  117. W. Ye, L. Zheng, Y. Liu, D. Wu, X. Gu, A. Wei, Enhanced visible light photoreduction of aqueous Cr(VI) by Ag/Bi4O7/g-C3N4 nanosheets ternary metal/non-metal Z-scheme heterojunction. J. Hazard. Mater. 365, 674–683 (2019)

    CAS  PubMed  Google Scholar 

  118. Y. Liu, X. Bai, J. Fan, X. Hu, Synergistic improvement of Cr(VI) reduction and RhB degradationusing RP/g-C3N4 photocatalyst under visible light irradiation. Arab. J. Chem. 13, 3836–3848 (2019)

    Google Scholar 

  119. X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, Recyclable nanoscale zero valent iron doped g-C3N4/MoS2 for efficient photocatalysis of RhB and Cr(VI) driven by visible light. ACS Sustain. Chem. Eng. 4, 4055–4063 (2016)

    CAS  Google Scholar 

  120. Y. Huang, X. Zhang, K. Zhang, P. Lu, D. Zhang, Facile fabrication of sandwich-like BiOI/AgI/g-C3N4 composites for efficient photocatalytic degradation of methyl orange and reduction of Cr(VI). J. Nanoparticle Res. 20, 328 (2018)

    Google Scholar 

  121. X. He, Y. Xue, X. Yang, Y. Li, Q. Li, B. Yu, Cyclodextrins grafted MoS2/g-C3N4 as high-performance photocatalysts for the removal of glyphosate and Cr(VI) from simulated agricultural runoff. Chem. Eng. J. 399, 125747 (2020)

    Google Scholar 

  122. Y. Shi, B. Wang, L. Duan, Y. Zhu, Z. Gui, R.K.K. Yuen, Y. Hu, Processable dispersions of graphitic carbon nitride based nanohybrids and application in polymer nanocomposites. Ind. Eng. Chem. Res. 55, 7646–7654 (2016)

    CAS  Google Scholar 

  123. J.-O.M. Michael, J. Bojdys, M. Antonietti, A. Thomas, Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. chem. Eur. J. 14, 8177–8182 (2008)

    Google Scholar 

  124. B.V. Lotsch, W. Schnick, Thermal conversion of guanylurea dicyanamide into graphitic carbon nitride via prototype Cnx precursors. Chem. Mater. 17, 3976 (2005)

    CAS  Google Scholar 

  125. P.H. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2009)

    CAS  Google Scholar 

  126. G. Luciani, C. Imparato, G. Vitiello, Photosensitive hybrid nanostructured materials: the big challenges for sunlight capture. Catalysts 10, 103 (2020)

    CAS  Google Scholar 

  127. WHO, Guidelines for Drinking-water Quality, third edition incorporating the first and second addenda Geneva 1, recommendation (2008)

  128. M. Mahmood, M. Barbooti, A. Balasim, A. Altameemi, M. Najah, N. Al-Shuwaiki, Removal of heavy metals using chemicals precipitation. Eng. Technol. J. 29, 595 (2011)

    Google Scholar 

  129. P. Grimshaw, J.M. Calo, G. Hradil, Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions. Chem. Eng. J. 175, 103–109 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  130. A. Ozverdi, M. Erdem, Cu2 + , Cd2 + and Pb2 + adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J. Hazard. Mater. 137, 626–632 (2006)

    PubMed  Google Scholar 

  131. L. Blue, M. Aelstyn, M. Matlock, D. Atwood, Low-level mercury removal from groundwater using a synthetic chelating ligand. Water Res. 42, 2025–2028 (2008)

    CAS  PubMed  Google Scholar 

  132. X. Ying, Z. Fang, Experimental research on heavy metal wastewater treatment with dipropyl dithiophosphate. J. Hazard. Mater. 137, 1636–1642 (2006)

    CAS  PubMed  Google Scholar 

  133. M.M. Matlock, B.S. Howerton, M.A. Van Aelstyn, F.L. Nordstrom, D.A. Atwood, Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: a field study from an active gold mine in Peru. Environ. Sci. Technol. 36, 1636–1639 (2002)

    CAS  PubMed  Google Scholar 

  134. Y. Zhang, X. Duan, Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Sci. Technol. 81, 1130–1136 (2020)

    CAS  PubMed  Google Scholar 

  135. L. Charerntanyarak, Heavy metals removal by chemical coagulation and precipitation. Water Sci. Technol. 39, 135–138 (1999)

    CAS  Google Scholar 

  136. H. Gebretsadik, A. Gebrekidan, L. Demlie, Removal of heavy metals from aqueous solutions using Eucalyptus camaldulensis: an alternate low cost adsorbent. Cogent Chem. 6, 1720892 (2020)

    Google Scholar 

  137. H. Zhang, F. Xu, J. Xue, S. Chen, J. Wang, Y. Yang, Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: behavior and mechanism. Scientific Reports 10, 6067 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  138. X. Wang, Y. Cui, Q. Peng, C. Fan, Z. Zhang, X. Zhang, Removal of Cd(II) and Cu(II) from aqueous solution by Na+-modified pisha sandstone. J. Chem. 2020, 2805479 (2020)

    Google Scholar 

  139. F.P. Fato, D.-W. Li, L.-J. Zhao, K. Qiu, Y.-T. Long, Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles. ACS Omega 4, 7543–7549 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  140. A. Üçer, A. Uyanık, S. Aygün, Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Sep. Purif. Technol. 47, 113–118 (2006)

    Google Scholar 

  141. H.G. Park, T.W. Kim, M.Y. Chae, I.-k. Yoo, Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics, 2007

  142. H. Yanagisawa, Y. Matsumoto, M. Machida, Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution. Appl. Surf. Sci. 256, 1619 (2010)

    CAS  Google Scholar 

  143. M. Motlochová, V. Slovák, E. Pližingrová, S. Lidin, J. Šubrt, Highly-efficient removal of Pb(ii), Cu(ii) and Cd(ii) from water by novel lithium, sodium and potassium titanate reusable microrods. RSC Adv. 10, 3694–3704 (2020)

    Google Scholar 

  144. S. Liang, S. Cao, C. Liu, S. Zeb, Y. Cui, G. Sun, Heavy metal adsorption using structurally preorganized adsorbent. RSC Adv. 10, 7259–7264 (2020)

    CAS  Google Scholar 

  145. H.A. Alalwan, M.A. Kadhom, A.H. Alminshid, Removal of heavy metals from wastewater using agricultural byproducts. J. Water Supply 69, 99–112 (2020)

    Google Scholar 

  146. M. El-Azazy, A.S. El-Shafie, A.A. Issa, M. Al-Sulaiti, J. Al-Yafie, B. Shomar, K. Al-Saad, Potato peels as an adsorbent for heavy metals from aqueous solutions: eco-structuring of a green adsorbent operating Plackett–Burman design. J. Chem. 2019, 4926240 (2019)

    Google Scholar 

  147. S.A. Abo-Farha, A.Y. Abdel-Aal, I. Ashour, S. Garamoun, Removal of some heavy metal cations by synthetic resin purolite C100. J. Hazard. Mater. 169, 190–194 (2009)

    CAS  PubMed  Google Scholar 

  148. F. Gode, E. Pehlivan, Removal of chromium(III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J. Hazard. Mater. 136, 330–337 (2006)

    CAS  PubMed  Google Scholar 

  149. S.Y. Kang, J.U. Lee, S.H. Moon, K.W. Kim, Competitive adsorption characteristics of Co2 + , Ni2 + , and Cr3 + by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56, 141–147 (2004)

    CAS  PubMed  Google Scholar 

  150. T. Motsi, N.A. Rowson, M.J.H. Simmons, Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 92, 42–48 (2009)

    CAS  Google Scholar 

  151. S.R. Taffarel, J. Rubio, On the removal of Mn2 + ions by adsorption onto natural and activated Chilean zeolites. Miner. Eng. 22, 336–343 (2009)

    CAS  Google Scholar 

  152. H. Yazici, M. Kiliç, M. Solak, Biosorption of copper(II) by Marrubium globosum subsp. globosum leaves powder: effect of chemical pretreatment. J. Hazard. Mater. 151, 669–675 (2008)

    CAS  PubMed  Google Scholar 

  153. M.K. Doula, Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res. 43, 3659–3672 (2009)

    CAS  PubMed  Google Scholar 

  154. V.J. Inglezakis, H.P. Grigoropoulou, Modeling of ion exchange of Pb2 + in fixed beds of clinoptilolite. Microporous Mesoporous Mater. 61, 273–282 (2003)

    CAS  Google Scholar 

  155. M.S. Berber-Mendoza, R. Leyva-Ramos, P. Alonso-Davila, L. Fuentes-Rubio, R.M. Guerrero-Coronado, Comparison of isotherms for the ion exchange of Pb(II) from aqueous solution onto homoionic clinoptilolite. J. Colloid Interface Sci. 301, 40–45 (2006)

    CAS  PubMed  Google Scholar 

  156. J. Wang, J. Cong, H. Xu, J. Wang, H. Liu, M. Liang, J. Gao, Q. Ni, J. Yao, Facile gel-based morphological control of Ag/g-C3N4 porous nanofibers for photocatalytic hydrogen generation. ACS Sustain. Chem. Eng. 5, 10633–10639 (2017)

    CAS  Google Scholar 

  157. S. Wang, J. Li, Q. Li, X. Bai, J. Wang, Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation. Nanoscale 12, 364–371 (2020)

    PubMed  Google Scholar 

  158. X. Zeng, Y. Liu, Y. Kang, Q. Li, Y. Xia, Y. Zhu, H. Hou, M.H. Uddin, T.R. Gengenbach, D. Xia, C. Sun, D.T. McCarthy, A. Deletic, J. Yu, X. Zhang, Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catal. 10, 3697–3706 (2020)

    CAS  Google Scholar 

  159. J. Sun, S. Yang, Z. Liang, X. Liu, P. Qiu, H. Cui, J. Tian, Two-dimensional/one-dimensional molybdenum sulfide (MoS2) nanoflake/graphitic carbon nitride (g-C3N4) hollow nanotube photocatalyst for enhanced photocatalytic hydrogen production activity. J. Colloid Interface Sci. 567, 300–307 (2020)

    CAS  PubMed  Google Scholar 

  160. M. Baca, M. Dworczak, M. Aleksandrzak, E. Mijowska, R. Kalenczuk, B. Zielińska, Mesoporous carbon/graphitic carbon nitride spheres for photocatalytic H2 evolution under solar light irradiation. Int. J. Hydrogen Energy 45, 1 (2020)

    Google Scholar 

  161. M. Sima, E. Vasile, A. Sima, N. Preda, C. Logofatu, Graphitic carbon nitride based photoanodes prepared by spray coating method. Int. J. Hydrogen Energy 44, 24430–24440 (2019)

    CAS  Google Scholar 

  162. S. Raghu, P.N. Santhosh, S. Ramaprabhu, Nanostructured palladium modified graphitic carbon nitride – high performance room temperature hydrogen sensor. Int. J. Hydrogen Energy 41, 20779–20786 (2016)

    Google Scholar 

  163. K. Wang, X. Wang, H. Pan, Y. Liu, S. Xu, S. Cao, In situ fabrication of CDs/g-C3N4 hybrids with enhanced interface connection via calcination of the precursors for photocatalytic H2 evolution. Int. J. Hydrogen Energy 43, 91–99 (2018)

    CAS  Google Scholar 

  164. Y. Zhang, S. Zong, C. Cheng, J. Shi, X. Guan, Y. Lu, L. Guo, One-pot annealing preparation of Na-doped graphitic carbon nitride from melamine and organometallic sodium salt for enhanced photocatalytic H2 evolution. Int. J. Hydrogen Energy 43, 13953–13961 (2018)

    CAS  Google Scholar 

  165. N. Denisov, E. Chubenko, V. Bondarenko, V. Borisenko, Synthesis of oxygen-doped graphitic carbon nitride from thiourea. Tech. Phys. Lett. 45, 108–110 (2019)

    CAS  Google Scholar 

  166. Z. Jia, F. Lyu, L.C. Zhang, S. Zeng, S.X. Liang, Y.Y. Li, J. Lu, Pt nanoparticles decorated heterostructured g-C3N4/Bi2MoO6 microplates with highly enhanced photocatalytic activities under visible light. Sci. Rep. 9, 7636 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  167. R. Guo, X. Zhang, B. Li, H. Zhang, J. Gou, X. Cheng, 2D-Bi2MoO6/2D-g-C3N4 nanosheet heterojunction composite: synthesis and enhanced visible light photocatalytic mechanism. J. Phys. D 52, 085302 (2018)

    Google Scholar 

  168. Z. Wang, J. Lv, J. Zhang, K. Dai, C. Liang, Facile synthesis of Z-scheme BiVO4/porous graphite carbon nitride heterojunction for enhanced visible-light-driven photocatalyst. Appl. Surf. Sci. 430, 595–602 (2018)

    CAS  Google Scholar 

  169. N. Shezad, I.M. Maafa, K. Johari, A. Hafeez, P. Akhter, M. Shabir, A. Raza, H. Anjum, M. Hussain, M. Tahir, Carbon nanotubes incorporated Z-scheme assembly of AgBr/TiO(2) for photocatalytic hydrogen production under visible light irradiations. Nanomaterials (Basel, Switzerland) 9, 1767 (2019)

    CAS  Google Scholar 

  170. G. Long, J. Ding, L. Xie, R. Sun, M. Chen, Y. Zhou, X. Huang, G. Han, Y. Li, W. Zhao, Fabrication of mediator-free g-C3N4/Bi2WO6 Z-scheme with enhanced photocatalytic reduction dechlorination performance of 2,4-DCP. Appl. Surf. Sci. 455, 1010–1018 (2018)

    CAS  Google Scholar 

  171. X. Ruan, Y. Hu, Effectively enhanced photodegradation of Bisphenol A by in situ g-C3N4-Zn/Bi2WO6 heterojunctions and mechanism study. Chemosphere 246, 125782 (2020)

    CAS  PubMed  Google Scholar 

  172. J. Zou, K. Wu, H. Wu, J. Guo, L. Zhang, Synthesis of heterostructure δ-MnO2/h-MoO3 nanocomposite and the enhanced photodegradation activity of methyl orange in aqueous solutions. J. Mater. Sci. 55, 3329–3346 (2020)

    CAS  Google Scholar 

  173. A. Yuan, H. Lei, F. Xi, J. Liu, L. Qin, Z. Chen, X. Dong, Graphene quantum dots decorated graphitic carbon nitride nanorods for photocatalytic removal of antibiotics. J. Colloid Interface Sci. 548, 56–65 (2019)

    CAS  PubMed  Google Scholar 

  174. S. Vignesh, A.L. Muppudathi, J.K. Sundar, Multifunctional performance of gC3N4-BiFeO3-Cu2O hybrid nanocomposites for magnetic separable photocatalytic and antibacterial activity. J. Mater. Sci.: Mater. Electron. 29, 10784–10801 (2018)

    CAS  Google Scholar 

  175. J. Wang, C. Qin, H. Wang, M. Chu, A. Zada, X. Zhang, J. Li, F. Raziq, Y. Qu, L. Jing, Exceptional photocatalytic activities for CO2 conversion on AlO bridged g-C3N4/α-Fe2O3 z-scheme nanocomposites and mechanism insight with isotopesZ. Appl. Catal. B 221, 459–466 (2018)

    CAS  Google Scholar 

  176. X. Li, W. Tian, J. Jia, J. Cao, Z. Zhang, Y. Wang, Synthesis of Graphitic Carbon Nitride Nanosheets Decorated Spherical-Like Nickel Oxide Composites for Carbon Monoxide Gas-Sensing Application (Micro & Nano Letters, Institution of Engineering and Technology, London, 2019), pp. 1410–1413

    Google Scholar 

  177. L. Zhang, Z. Jin, S. Huang, Y. Zhang, M. Zhang, Y.-J. Zeng, S. Ruan, Ce-doped graphitic carbon nitride derived from metal organic frameworks as a visible light-responsive photocatalyst for H(2) production. Nanomaterials (Basel, Switzerland) 9, 1539 (2019)

    CAS  Google Scholar 

  178. J.-H. Zhang, M.-J. Wei, Z.-W. Wei, M. Pan, C.-Y. Su, Ultrathin graphitic carbon nitride nanosheets for photocatalytic hydrogen evolution. ACS Appl. Nano Mater. 3, 1010–1018 (2020)

    CAS  Google Scholar 

  179. F. Subhan, I. Khan, J. Hong, Two-dimensional graphitic carbon nitride (g-C4N3) for superior selectivity of multiple toxic gases (CO, NO2, and NH3). Nanotechnology 31, 145501 (2020)

    CAS  PubMed  Google Scholar 

  180. X. Chen, H. Wang, R. Meng, M. Chen, Porous graphitic carbon nitride synthesized via using carbon nanotube as a novel recyclable hard template for efficient visible light. Photocatal. Organ. Pollutant Degrad. 4, 6123–6129 (2019)

    CAS  Google Scholar 

  181. C. Lu, Y. Yang, X. Chen, Ultra-thin conductive graphitic carbon nitride assembly through van der Waals epitaxy toward high-energy-density flexible supercapacitors. Nano Lett. 19, 4103–4111 (2019)

    CAS  PubMed  Google Scholar 

  182. M.-H. Wu, L. Li, Y.-C. Xue, G. Xu, L. Tang, N. Liu, W.-Y. Huang, Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation. Appl. Catal. B 228, 103–112 (2018)

    CAS  Google Scholar 

  183. M. Mousavi, A. Habibi-Yangjeh, Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: novel visible-light-driven photocatalysts based on graphitic carbon nitride. J. Colloid Interface Sci. 465, 83–92 (2016)

    CAS  PubMed  Google Scholar 

  184. L. Jiang, X. Yuan, G. Zeng, J. Liang, X. Chen, H. Yu, H. Wang, Z. Wu, J. Zhang, T. Xiong, In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl. Catal. B 227, 376–385 (2018)

    CAS  Google Scholar 

  185. D.P. Sahoo, K.K. Das, S. Patnaik, K. Parida, Double charge carrier mechanism through 2D/2D interface-assisted ultrafast water reduction and antibiotic degradation over architectural S, P co-doped g-C3N4/ZnCr LDH photocatalyst. Inorganic Chem. Front. 7, 3695–3717 (2020)

    CAS  Google Scholar 

  186. P. Mishra, A. Behera, D. Kandi, S. Ratha, K. Parida, Novel magnetic retrievable visible-light-driven ternary Fe3O4@NiFe2O4/phosphorus-doped g-C3N4 nanocomposite photocatalyst with significantly enhanced activity through a double-Z-scheme system. Inorg. Chem. 59, 4255–4272 (2020)

    CAS  PubMed  Google Scholar 

  187. L. Acharya, S. Nayak, S.P. Pattnaik, R. Acharya, K. Parida, Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. J. Colloid Interface Sci. 566, 211–223 (2020)

    CAS  PubMed  Google Scholar 

  188. J.-C. Wang, C.-X. Cui, Y. Li, L. Liu, Y.-P. Zhang, W. Shi, Porous Mn doped g-C3N4 photocatalysts for enhanced synergetic degradation under visible-light illumination. J. Hazard. Mater. 339, 43–53 (2017)

    CAS  PubMed  Google Scholar 

  189. W. Wang, Q. Niu, G. Zeng, C. Zhang, D. Huang, B. Shao, C. Zhou, Y. Yang, Y. Liu, H. Guo, W. Xiong, L. Lei, S. Liu, H. Yi, S. Chen, X. Tang, 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B 273, 119051 (2020)

    CAS  Google Scholar 

  190. F. Zhao, Y. Liu, S. Benhammouda, B. Doshi, N. Guijarro, X. Min, C.-J. Tang, M. Sillanpää, K. Sivula, S. Wang, MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media. Appl. Catal. B 272, 119033 (2020)

    CAS  Google Scholar 

  191. X.-H. Yi, S.-Q. Ma, X.-D. Du, C. Zhao, H. Fu, P. Wang, C.-C. Wang, The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light. Chem. Eng. J. 375, 121944 (2019)

    CAS  Google Scholar 

  192. F. Liu, S. Dong, Z. Zhang, X. Li, X. Dai, Y. Xin, X. Wang, K. Liu, Z. Yuan, Z. Zheng, Synthesis of a well-dispersed CaFe2O4/g-C3N4/CNT composite towards the degradation of toxic water pollutants under visible light. RSC Adv. 9, 25750–25761 (2019)

    CAS  Google Scholar 

  193. Y. Zheng, Z. Yu, F. Lin, F. Guo, K.A. Alamry, L.A. Taib, A.M. Asiri, X. Wang, Sulfur-doped carbon nitride polymers for photocatalytic degradation of organic pollutant and reduction of Cr(VI). Molecules 22, 572 (2017)

    PubMed Central  Google Scholar 

  194. X. Yuan, C. Zhou, Q. Jing, Q. Tang, Y. Mu, A.-K. Du, Facile synthesis of g-C3N4 nanosheets/ZnO nanocomposites with enhanced photocatalytic activity in reduction of aqueous chromium(VI) under visible light. Nanomaterials (Basel) 6, 173 (2016)

    Google Scholar 

  195. H. Wei, Q. Zhang, Y. Zhang, Z. Yang, A. Zhu, D.D. Dionysiou, Enhancement of the Cr(VI) adsorption and photocatalytic reduction activity of g-C3N4 by hydrothermal treatment in HNO3 aqueous solution. Appl. Catal. A 521, 9–18 (2016)

    CAS  Google Scholar 

  196. A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Vadivel, Integration of C-dots with g-C3N4 nanosheet/Ag2CO3 nanocomposites as effective Z-scheme visible-light photocatalysts for removal of hazardous organic and inorganic contaminates. J. Mater. Sci. (2020)

  197. A. Bhati, S.R. Anand, D. Saini, S.K. Sonkar, Sunlight-induced photoreduction of Cr(VI) to Cr(III) in wastewater by nitrogen-phosphorus-doped carbon dots. npj Clean Water 2, 12 (2019)

    CAS  Google Scholar 

  198. J.-H. Wu, F.-Q. Shao, S.-Y. Han, S. Bai, J.-J. Feng, Z. Li, A.-J. Wang, Shape-controlled synthesis of well-dispersed platinum nanocubes supported on graphitic carbon nitride as advanced visible-light-driven catalyst for efficient photoreduction of hexavalent chromium. J. Colloid Interface Sci. 535, 41–49 (2019)

    CAS  PubMed  Google Scholar 

  199. S. Patnaik, K.K. Das, A. Mohanty, K. Parida, Enhanced photo catalytic reduction of Cr(VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation. Catal. Today 315, 52–66 (2018)

    CAS  Google Scholar 

  200. J.A. Dyer, N.C. Scrivner, S.K. Dentel, A practical guide for determining the solubility of metal hydroxides and oxides in water. Environ. Prog. 17, 1–8 (1998)

    CAS  Google Scholar 

  201. K.S. Santhanam, J.A. Bard, R. Parsons (eds.), Standard Potentials In Aqueous Solutions (Marcel Dekker, Inc., New York, 1985), pp. 162–171

    Google Scholar 

Download references

Acknowledgements

Financial supports from the North-West University and the National Research Foundation, South Africa (Grants Ref: UID109333 and UID 116338) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian C. Onwudiwe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajiboye, T.O., Oyewo, O.A. & Onwudiwe, D.C. Conventional and Current Methods of Toxic Metals Removal from Water Using g-C3N4-Based Materials. J Inorg Organomet Polym 31, 1419–1442 (2021). https://doi.org/10.1007/s10904-020-01803-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01803-3

Keywords

Navigation