Skip to main content
Log in

Tailoring the RhB removal rate by modifying the PVDF membrane surface through ZnO particles deposition

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, PVDF membranes coated with ZnO particles were prepared to study the influence of the loading concentration on RhB pollutant removal. The PVDF membranes prepared by phase inversion method contain a mixture of α and β phases as identified by correlating the XRD and FT-IR results. The mean pore size evaluated by SEM measurements is about 4 μm and the asymmetric structure of the membrane was highlighted. The presence of ZnO particles on PVDF membrane was evidenced by XRD, SEM and EXD measurements. By coating with ZnO particles the hydrophilic character of the membrane was improved. The RhB removal was realized using a combined process of two competitive methods: adsorption and photocatalysis. By increasing the ZnO loading the removal efficiency was enhanced. Additionally, the electron spin resonance spectroscopy coupled with spin trapping technique was used to evidence the generation of reactive oxygen species during irradiation, the presence of both hydroxyl radical and superoxide radical being proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Li, M. Meng, Y. Cui, Y. Wu, Y. Zhang, H. Dong, Z. Zhu, Y. Feng, C. Wu, Changing conventional blending photocatalytic membranes (BPMs): Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method. Chem. Eng. J. 365, 405–414 (2019). https://doi.org/10.1016/j.cej.2019.02.042

    Article  CAS  Google Scholar 

  2. Z. Yang, T.A. Asoh, H. Uyama, Removal of cationic or anionic dyes from water using ion exchange cellulose monoliths as adsorbents. Bull. Chem. Soc. Jpn. 92, 1453–1461 (2019). https://doi.org/10.1246/bcsj.20190111

    Article  CAS  Google Scholar 

  3. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 252, 352–365 (2019). https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  PubMed  Google Scholar 

  4. M. Naushad, A.A. Alqadami, Z.A. AlOthman, I.H. Alsohaimi, M.S. Algamdi, A.M. Aldawsari, Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J. Mol. Liq. 293, 111442–111448 (2019). https://doi.org/10.1016/j.molliq.2019.111442

    Article  CAS  Google Scholar 

  5. X. Zheng, Z.P. Shen, L. Shi, R. Cheng, D.H. Yuan, Photocatalytic membrane reactors (PMRs) in water treatment: Configurations and influencing factors. Catalysts 7, 224–254 (2017). https://doi.org/10.3390/catal7080224

    Article  CAS  Google Scholar 

  6. N. Li, Y. Tian, J. Zhang, Z. Sun, J. Zhao, J. Zhang, W. Zuo, Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnOnanolayer: Enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation. J. Membr. Sci. 528, 359–368 (2017) https://doi.org/10.1016/j.memsci.2017.01.048R

    Article  CAS  Google Scholar 

  7. V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Purif. Technol. 90, 69–82 (2012). https://doi.org/10.1016/j.seppur.2012.02.014

    Article  CAS  Google Scholar 

  8. J. Hong, Y. He, Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 332, 67–75 (2014). https://doi.org/10.1016/j.desal.2013.10.026

    Article  CAS  Google Scholar 

  9. A. Rahimpour, S.S. Madaeni, Improvement of performance and surface properties of nano-porous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution. J. Membr. Sci. 360, 371–379 (2010). https://doi.org/10.1016/j.memsci.2010.05.036

    Article  CAS  Google Scholar 

  10. C. Ba, J. Economy, Preparation and characterization of a neutrally charged antifouling nanofiltration membrane by coating a layer of sulfonated poly(ether ether ketone) on a positively charged nanofiltration membrane. J. Membr. Sci. 362, 192–201 (2010). https://doi.org/10.1016/j.memsci.2010.06.032

    Article  CAS  Google Scholar 

  11. X. Chen, G. Huang, C. An, R. Feng, Y. Wu, C. Huang, Plasma-induced PAA-ZnO coated PVDF membrane for oily wastewatertreatment: Preparation, optimization, and characterization through TaguchiOA design and synchrotron-based X-ray analysis. J. Membr. Sci. 582, 70–82 (2019). https://doi.org/10.1016/j.memsci.2019.03.091

    Article  CAS  Google Scholar 

  12. G. De Filpo, E. Pantuso, K. Armentano, P. Formoso, G. Di Profio, T. Poerio, E. Fontananova, C. Meringolo, A.I. Mashin, F.P. Nicoletta, Chemical vapor deposition of Photocatalyst nanoparticles on PVDF membranes for advanced oxidation processes. Membranes 8, 35–50 (2018). https://doi.org/10.3390/membranes8030035

    Article  CAS  PubMed Central  Google Scholar 

  13. T. Liu, L. Wang, X. Liu, C. Sun, Y. Lv, R. Miao, X. Wang, Dynamic photocatalytic membrane coated with ZnIn2S4 for enhanced photocatalytic performance and antifouling property. Chem. Eng. J. 379, 122379 (2020). https://doi.org/10.1016/j.cej.2019.122379

    Article  CAS  Google Scholar 

  14. D. Toloman, A. Mesaros, A. Popa, T.D. Silipas, S. Neamtu, G. Katona, V-doped ZnO particles: Synthesis, structural, optical and photocatalytic properties. J. Mater. Sci. Mater. Electron. 27, 5691–5698 (2016). https://doi.org/10.1007/s10854-016-4480-y

    Article  CAS  Google Scholar 

  15. D. Zhang, F. Daia, P. Zhang, Z. An, Y. Zhao, L. Chen, The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Mater. Sci. Eng. C 96, 684–692 (2019). https://doi.org/10.1016/j.msec.2018.11.049

    Article  CAS  Google Scholar 

  16. M. Bojarska, B. Nowak, J. Skowronski, W. Piatkiewicz, L. Gradon, Growth of ZnO nanowires on polypropylene membrane surface – characterization and reactivity. Appl. Surf. Sci. 391, 457–467 (2017). https://doi.org/10.1016/j.apsusc.2016.04.130

    Article  CAS  Google Scholar 

  17. K. Raja, P.S. Ramesh, D. Geetha, Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by co-precipitation method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 19–24 (2014). https://doi.org/10.1016/j.saa.2013.09.103

    Article  CAS  PubMed  Google Scholar 

  18. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  19. X. Cai, T. Lei, D. Sun, L. Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 7, 15382–15389 (2017). https://doi.org/10.1039/C7RA01267E

    Article  CAS  Google Scholar 

  20. T. Lei, X. Cai, X. Wang, L. Yu, X. Hu, G. Zheng, W. Lv, L. Wang, D. Wu, D. Sun, L. Lin, Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Adv. 3, 24952–24958 (2013). https://doi.org/10.1039/C3RA42622J

    Article  CAS  Google Scholar 

  21. A. Peles, O. Aleksic, V.P. Pavlovic, V. Djokovic, R. Dojcilovic, Z. Nikolic, F. Marinkovic, M. Mitric, V. Blagojevic, B. Vlahovic, V.B. Pavlovic, Structural and electrical properties of ferroelectric poly(vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films. Phys. Scr. 93, 105801(11p) (2018). https://doi.org/10.1088/1402-4896/aad749

    Article  CAS  Google Scholar 

  22. A. Ferin Fathima, R. Jothi Mani, K. Sakthipandi, K. Manimala, A. Hossain, Enhanced antifungal activity of pure and iron-doped ZnO nanoparticles prepared in the absence of reducing agents. J. Inorg. Organomet. Polym. 30, 2397–2405 (2020). https://doi.org/10.1007/s10904-019-01400-z

    Article  CAS  Google Scholar 

  23. M.A. Bachmann, J.L. Koenig, J. Chem. Phys., 5910 74, 5896 (1981). https://doi.org/00219606/81/105896-15$01.00

  24. N. Jia, Q. Xing, G. Xia, J. Sun, R. Song, W. Huang, Enhanced β-crystalline phase in poly(vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles. Mater. Lett. 139, 212–215 (2015). https://doi.org/10.1016/jmatlet.2014.10.069

    Article  CAS  Google Scholar 

  25. S.K. Ghosh, W. Rahman, T.R. Middya, S. Sen, D. Mandal, Improved breakdown strength and electrical energy storage performance of γ-poly (vinylidene fluoride)/unmodified montmorillonite clay nano-dielectrics. Nanotechnology 27, 215401(10pp) (2016). https://doi.org/10.1088/0957-4484/27/21/215401

    Article  CAS  Google Scholar 

  26. S. Lanceros-Mendez, J.F. Mano, A.M. Costa, V.H. Schmidt, FTIR and DSC studies of mechanically deformed β-PVDF films. J. Macromol. Sci. Phys. B40, 517–527 (2001). https://doi.org/10.1081/MB-100106174

    Article  CAS  Google Scholar 

  27. X. Chen, G. Huang, C. An, R. Feng, Y. Wu, C. Huang, Plasma-induced PAA-ZnO coated PVDF membrane for oily wastewater treatment: Preparation, optimization, and characterization through Taguchi OA design and synchrotron-based X-ray analysis. J. Membr. Sci. 582, 70–82 (2019). https://doi.org/10.1016/j.memsci.2019.03.091

    Article  CAS  Google Scholar 

  28. H. Yuan, J. Ren, Preparation of poly(vinylidene fluoride) (PVDF)/acetalyzed poly(vinyl alcohol) ultrafiltration membrane with the enhanced hydrophilicity and the anti-fouling property. Chem. Eng. Res. Des. 121, 348–359 (2017). https://doi.org/10.1016/j.cherd.2017.03.023

    Article  CAS  Google Scholar 

  29. X. Zhang, Y. Wang, Y. Liu, J. Xu, Y. Han, X. Xu, Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Appl. Surf. Sci. 316, 333–340 (2014). https://doi.org/10.1016/j.apsusc.2014.08.004

    Article  CAS  Google Scholar 

  30. A.P. Indolia, M.S. Gaur, Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J. Polym. Res. 20, 43 (2013). https://doi.org/10.1007/s10965-012-0043-y

    Article  CAS  Google Scholar 

  31. W. Wu, X. Yin, B. Dai, J. Kou, Y. Ni, C. Lu, Water flow drived piezo-photocatalytic flexible films: Bi-piezoelectric integration of ZnO nanorods and PVDF. Appl. Surf. Sci. 517, 146119 (9pp) (2020). https://doi.org/10.1016/j.apsusc.2020.146119

    Article  CAS  Google Scholar 

  32. H.M. Shanshool, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, Investigation of energy band gap in polymer/ZnO nanocomposites. J. Mater. Sci. Mater. Electron. 27, 9804–9811 (2016). https://doi.org/10.1007/s10854-016-5046-8

    Article  CAS  Google Scholar 

  33. V. Alzari, V. Sanna, S. Biccai, T. Caruso, A. Politano, N. Scaramuzza, M. Sechi, D. Nuvoli, R. Sanna, A. Mariani, Tailoring the physical properties of nanocomposite films by the insertion of graphene and other nanoparticles. Compos. Part B 60, 29–35 (2014) https://doi.org/10.1016/j.compositesb

    Article  CAS  Google Scholar 

  34. X. Chen, G. Huang, C. An, R. Feng, Y. Wu, C. Huang, Plasma-induced PAA-ZnO coated PVDF membrane for oily waste water treatment: Preparation, optimization, and characterization through Taguchi OA design and synchrotron-based X-ray analysis. J. Membr. Sci. 582, 70–82 (2019). https://doi.org/10.1016/j.memsci.2019.03.091

    Article  CAS  Google Scholar 

  35. J. Huang, J. Hu, Y. Shi, G. Zeng, W. Cheng, H. Yu, Y. Gu, L. Shi, K. Yi, Evaluation of self-cleaning and photocatalytic properties of modified g-C3N4 based PVDF membranes driven by visible light. J. Colloid Interface Sci. 541, 356–366 (2019). https://doi.org/10.1016/j.jcis.2019.01.105

    Article  CAS  PubMed  Google Scholar 

  36. Hung-Ming Lin, Kao-Shuo Chang, Synergistic piezophotocatalytic and photoelectrochemical performance of poly(vinylidene fluoride)–ZnSnO3 and poly(methyl methacrylate)–ZnSnO3 nanocomposites. RSC Adv. 7, 30513 (2017). https://doi.org/10.1039/C7RA05175A

    Article  Google Scholar 

  37. S. Teixeira, P.M. Martins, S. Lanceros-Méndez, G. Klaus Kühn, Cuniberti, reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene. Appl. Surf. Sci. 384, 497–504 (2016). https://doi.org/10.1016/j.apsusc.2016.05.073

    Article  CAS  Google Scholar 

  38. A. Popa, M. Stefan, D. Toloman, O. Pana, A. Mesaros, C. Leostean, S. Macavei, O. Marincas, R. Suciu, L. Barbu-Tudoran, Fe3O4-TiO2: Gd nanoparticles with enhanced photocatalytic activity and magnetic recyclability. Powder Technol. 325, 441–451 (2018). https://doi.org/10.1016/j.powtec.2017.11.049

    Article  CAS  Google Scholar 

  39. M. Lázaro-Martínez, M.F. Leal-Denis, L.L. Piehl, E. Rubín de Celis, G.Y. Buldain, V.C. Dall’-Orto, Studies on the activation of hydrogen peroxide for color removal in the presence of a new Cu(II)-polyampholyte heterogeneous catalyst. Appl. Catal. B Environ. 82, 273–283 (2008). https://doi.org/10.1016/j.apcatb.2008.01.030

    Article  CAS  Google Scholar 

  40. F.A. Villamena, J.K. Merle, C.M. Hadad, J.L. Zweier, Superoxide radical anion adduct of 5,5-Dimethyl-1-pyrroline N-oxide (DMPO). The thermodynamics of formation and its acidity. J. Phys. Chem. A 109, 6083–6088 (2005). https://doi.org/10.1021/jp052431f

    Article  CAS  PubMed  Google Scholar 

  41. D. Toloman, O. Pana, M. Stefan, A. Popa, C. Leostean, S. Macavei, D. Silipas, I. Perhaita, M.D. Lazar, L. Barbu-Tudoran, Photocatalytic activity of SnO2-TiO2 composite nanoparticles modified with PVP. J. Colloid Interface Sci. 542, 296–307 (2019). https://doi.org/10.1016/j.jcis.2019.02.026

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Toloman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popa, A., Toloman, D., Stan, M. et al. Tailoring the RhB removal rate by modifying the PVDF membrane surface through ZnO particles deposition. J Inorg Organomet Polym 31, 1642–1652 (2021). https://doi.org/10.1007/s10904-020-01795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01795-0

Keywords

Navigation