Skip to main content
Log in

Preparation and Anti-microbial Performance of Ni0.5Zn0.5Fe2O4@Ag Nanocomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Pathogens are harmful to humans and can lead to death in severe cases. Silver nanoparticles are considered to be the most effective antibacterial materials. Therefore, the magnetic NZFO@Ag-R nanocomposites were prepared by the reduction method with magnetic Ni0.5Zn0.5Fe2O4 nanoparticles, silver nitrate, and sodium citrate as raw materials. The antibacterial performances of the materials were evaluated by the growth curve, the inhibition zone test, the minimum inhibitory concentration (MIC) test, and the minimum bactericidal concentration (MBC) test with E. coli and S. aureus as the bacterial source. The XRD, SEM, and VSM characterization results showed that the magnetic NZFO@Ag-40% nanocomposites had a spherical morphology with an average size of 23 nm. The Ag loaded had a cubic crystal structure and evenly mixed with NZFO. The mass fraction of silver was 31.34%. The saturation magnetization decreased from 63.7 emu/g to 31.6 emu/g with the increase of Ag content. The antibacterial circle test and growth curve test explained that NZFO nanoparticles had almost no antibacterial properties. When the Ag content reached 40%, the radius of the antibacterial circle was the largest and the inhibition effect of the growth curve was the most obvious. When the content raised to 50%, the antibacterial activity was not significantly enhanced. The MIC and MBC of the magnetic NZFO@Ag-40% nanocomposites for E. coli were 5 µg/mL. The MIC and MBC for S. aureus were 5 µg/mL and 10 µg/mL, respectively. The possible mechanism was proposed for the improved antibacterial activity of NZFO@Ag-R nanocomposites.

Graphic Abstract

NZFO@Ag-R nanocomposites were prepared for the first time and applied to the antibacterial field. The antibacterial activity was strongest when the Ag content reached 40%. Antibacterial capability test showed that NZFO@Ag-40% nanocomposite had strong antibacterial properties against both E. coli-gram-negative bacteria and S. aureus-gram-positive bacteria. The DNA damage caused by the accumulation of nanoparticles on the membrane by Ag+ and the reaction of macromolecular substances with reactive oxygen species was the main reason for the antibacterial activity of the composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.P. Kolla, T. Oesterle, M. Gold, F. Southwick, T. Rummans, J. Neurol. Sci. 411, 116719 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. P. Jia, W.H. Dong, S.J. Yang, Z.C. Zhan, L. Tu, S.J. Lai, Trends Parasitol. 36, 235–238 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  3. W.Y. Sun, J.H. Gong, J.P. Zhou, Y.L. Zhao, J.X. Tan, A.N. Ibrahim, Y. Zhou, Intl. J. Env. Res. Pub. Heal. 12, 1425–1448 (2015)

    Article  Google Scholar 

  4. K. Kortright, B. Chan, J. Koff, P. Turner, Cell Host Microbe 25, 219–232 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. T. Anand, N. Virmani, S. Kumar, A.K. Mohanty, S. Pavulraj, B.C. Bera, R.K. Vaid, U. Ahlawat, B.N. Tripath, J. Glob. Antimicrob. Res. 21, 34–41 (2020)

    Article  Google Scholar 

  6. E.O. Ogunsona, R. Muthuraj, E. Ojogbo, O. Valerio, T. Mekonnen, Appl. Mater. Today 18, 100473 (2020)

    Article  Google Scholar 

  7. H. Yun, J.D. Kim, H.C. Choi, C.W. Lee, B. Kor, Chem. Soc. 34, 3261–3264 (2013)

    CAS  Google Scholar 

  8. X.J. Song, X.Y. Shi, Appl. Surf. Sci. 491, 682–689 (2019)

    Article  CAS  Google Scholar 

  9. J.X. Yang, Phys. A 541, 123316 (2020)

    Article  Google Scholar 

  10. Y.Z. Ning, X. Liu, H.M. Cheng, Z.Y. Zhang, Phys. A 539, 122907 (2020)

    Article  Google Scholar 

  11. C. Vanpouille, A. Arakelyan, L. Margolis, Trends Microbiol. 20, 369–375 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. X. Chen, Y. Wang, W.Y. Li, J.P. Zhang, W.Q. Qi, Y.F. Lu, Z.B. Ding, Chemosphere 242, 125190 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. V. Drauch, C. Ibesich, C. Vogl, M. Hess, C. Hess, Int. J. Food Microbiol. 328, 108660 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. A. Soni, J. Smith, A. Thompson, G. Brightwell, Trends Food Sci. Tech. 97, 433–442 (2020)

    Article  CAS  Google Scholar 

  15. M.C. Ploy, A. Andremont, B. Valtier, C.L. Jeunne, Therapies 75, 7–12 (2020)

    Article  Google Scholar 

  16. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J.D. Aberasturi, I.R.D. Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Trends Biotechnol. 30, 499–511 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. J.W. Chen, Q. Zhao, J.M. Peng, X. Yang, D.S. Yu, W. Zhao, J. Dent. 96, 103332 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. Y.T. Wen, Z. Li, J.H. Jiang, Chin. Chem. Lett. 30, 1565–1574 (2019)

    Article  CAS  Google Scholar 

  19. M. Rai, A. Yadav, A. Gade, Biotechnol. Adv. 27, 76–83 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. H.X. Jia, S.N. Zhou, Y.Q. Fu, Y. Wang, J.Y. Mi, T.C. Lu, X.R. Wang, C.L. Lü, Mater. Sci. Eng. C 110, 110735 (2020)

    Article  CAS  Google Scholar 

  21. D. Barillo, D. Marx, Burns 40, S3–S8 (2014)

    Article  PubMed  Google Scholar 

  22. M.Q. Ge, J. Li, S.J. Song, N. Meng, N.L. Zhou, Appl. Clay Sci. 183, 105334 (2019)

    Article  CAS  Google Scholar 

  23. M. Mercier-Bonin, B. Despax, P. Raynaud, E. Houdeau, M. Thomas, Crit. Rev. Food Sci. 58, 1023–1032 (2018)

    Article  CAS  Google Scholar 

  24. H.J. Klasen, Inter. Soc. Burn Injur. 26, 117 (2000)

    Article  CAS  Google Scholar 

  25. V.K. Kizhakkekalam, K. Chakraborty, M. Joy, Int. J. Antimicrob. Ag. 55, 105892 (2020)

    Article  CAS  Google Scholar 

  26. R. Salwan, V. Sharma, Microbiol. Res. 231, 126374 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. A. Lokhande, P. Babar, V. Karade, J. Jang, V.C. Lokhande, D.J. Lee, I. Kim, S.P. Patole, I.A. Qattan, C.D. Lokhande, J. Kim, Mater. Today. 14, 100181 (2019)

    Article  CAS  Google Scholar 

  28. M.C. Rodrigues, W.R. Rolim, M.M. Viana, T.R. Souza, F. Gonçalves, C.J. Tanaka, B. Bueno-Silva, A.B. Seabra, J. Dent. 96, 103327 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. N.D. Phu, L.H. Hoang, P.V. Hai, T.Q. Huy, X.B. Chen, W.C. Chou, J. Alloy Compd. 824, 153914 (2020)

    Article  CAS  Google Scholar 

  30. V.P. Dinh, N.Q. Tran, N.Q.T. Le, Q.H. Tran, T.D. Nguyen, T.D. Nguyen, Prog. Nat. Sci. 29, 648–654 (2019)

    Article  CAS  Google Scholar 

  31. A. Ashouri, S. Samadi, B. Nasiri, Z. Bahrami, CR Chim. 22, 549–556 (2019)

    Article  CAS  Google Scholar 

  32. A.K. Biswas, S. Patra, D. Sarkar, D. Das, S.D. Chattopadhyay, Colloid Surf. A 589, 124420 (2020)

    Article  CAS  Google Scholar 

  33. Yildiz, D.V. Bayramol, R. Atav, A.Ö. Ağirgan, M.A. Kurç, U. Ergünay, C. Mayer, R.L. Hadimani, Appl. Surf. Sci. 521, 146332 (2020)

  34. Z. Abdullaeva, Z. Kelgenbaeva, S. Nagaoka, M. Matsuda, T. Masayuki, M. Koinuma, T. Nishiyama, Mater. Today 4, 7044–7052 (2017)

    Google Scholar 

  35. V.I. Popkov, V.P. Tolstoy, V.G. Semenov, J. Alloy Compd. 813, 152179 (2020)

    Article  CAS  Google Scholar 

  36. R.S. Abiev, O.V. Almyasheva, S.G. Izotova, V.V. Gusarov, J. Chem. Tech. Appl. 1, 7–13 (2017)

    Google Scholar 

  37. K.D. Martinson, I.B. Panteleev, A.P. Shevchik, V.I. Popkov, Lett. Mater. 9, 475–479 (2019)

    Article  Google Scholar 

  38. O.V. Almjasheva, V.V. Gusarov, Russ. J. Appl. Chem. 89, 851–856 (2016)

    Article  CAS  Google Scholar 

  39. K.D. Martinson, I.A. Cherepkova, I.B. Panteleev, V.I. Popkov, Int. J. Self-Propag. High-Temp. Synth. 28, 266–270 (2019)

    Article  CAS  Google Scholar 

  40. V.A. Kuznetsova, O.V. Almjasheva, V.V. Gusarov, Glass Phys. Chem. 35, 205–209 (2009)

    Article  CAS  Google Scholar 

  41. Q. Liu, J. Li, X. Zhong, Z.D. Zhong, L. Hao, Y.R. Chen, Adv. Powder Technol. 29, 2082–2090 (2018)

    Article  CAS  Google Scholar 

  42. M. Moghayedi, E. Goharshadi, K. Ghazvini, H. Ahmadzadeh, L. Ranjbaran, R. Masoudi, R. Masoudi, R. Ludwig, Colloid. Surf. B 159, 366–374 (2017)

    Article  CAS  Google Scholar 

  43. Matai, A. Sachdev, P. Dubey, S.U. Kumar, B. Bhushan, P. Gopinath, Colloid. Surf. B115, 359–367 (2014)

  44. A. Joe, S.H. Park, D.J. Kim, Y.J. Lee, K.H. Jhee, Y. Sohn, E.S. Jang, J. Solid State Chem. 267, 124–133 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Innovation Project of CHN Energy (Grant No. GJNY-20-109), and the Jiangsu Provincial Postgraduate Scientific Practice and Innovation Project (Grant No. SJCX20_1432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Yu, Q., Yu, L. et al. Preparation and Anti-microbial Performance of Ni0.5Zn0.5Fe2O4@Ag Nanocomposites. J Inorg Organomet Polym 31, 875–885 (2021). https://doi.org/10.1007/s10904-020-01768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01768-3

Keywords

Navigation