Skip to main content

Advertisement

Log in

Silver Nanoparticles and Silver Ions as Potential Antibacterial Agents

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Bacteria and superbugs have become more resistant to several antibiotics. Continuous and overuse of such antibiotics led to outbreaks of superbugs in both hospitals and communities. In recent decades, silver was used in medical treatment such as burns, wounds and bacterial infections. Silver metallic, silver nitrate and silver sulfadiazine were utilized for this treatment. Nowadays, silver nanoparticles and silver ions are effectively used as antibacterial agents in the medical field in the form of nanoparticles and ions, where silver ions proved an effective antimicrobial against active bacteria, viruses, and fungi than silver nanoparticles Ag NPs. However, modified or functionalized silver NPs are extremely active to kill bacteria than pure Ag NPs. Silver nanoparticle's size, shape, and concentration play an important role in their antimicrobial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L. Richtera, D. Chudobova, K. Cihalova, M. Kremplova, V. Milosavljevic, P. Kopel, I. Blazkova, D. Hynek, V. Adam, R. Kizek, Materials 8, 2994 (2015)

    CAS  PubMed Central  Google Scholar 

  2. K.S. Khashan, F.A. Abdulameer, M.S. Jabir, A.A. Hadi, G.M. Sulaiman, Anticancer activity and toxicity of carbon nanoparticles produced by pulsed laser ablation of graphite in water. Adv. Nat. Sci. Nanosci. Nanotechnol. 11, 035010 (2020)

    CAS  Google Scholar 

  3. K.S. Khashan, G.M. Sulaiman, R. Mahdi, Preparation of iron oxide nanoparticles-decorated carbon nanotube using laser ablation in liquid and their antimicrobial activity. Artif. Cells Nanomed. Biotechnol. 45, 1699–1709 (2017)

    CAS  PubMed  Google Scholar 

  4. F.A. Fadhil, B.A. Hasoon, N.N. Hussein, K.S. Khashan, Preparation and characterization of CuO NPs via laser ablation under electric field and study their antibacterial activity. AIP Conf. Proc. 2045, 020002 (2018)

    Google Scholar 

  5. K.S. Khashan, G.M. Sulaiman, A.H. Hamad, F.A. Abdulameer, A. Hadi, Generation of NiO nanoparticles via pulsed laser ablation in deionised water and their antibacterial activity. Appl. Phys. A 123, 190 (2017)

    Google Scholar 

  6. K.S. Khashan, G.M. Sulaiman, F.A. Abdulameer, T.R. Marzoog, Synthesis, antibacterial activity of TiO2 nanoparticles suspension induced by laser ablation in liquid. Eng. Technol. J. 32, 877–884 (2014)

    Google Scholar 

  7. J. Saranya, B.S. Sreeja, G. Padmalaya, S. Radha, T. Manikandan, Ultrasonic assisted cerium oxide/graphene oxide hybrid: preparation, anti-proliferative, apoptotic induction and G2/M cell cycle arrest in HeLa cell lines. J. Inorg. Organomet. Polym. 30, 2666–2676 (2020)

    CAS  Google Scholar 

  8. K.S. Khashan, G.M. Sulaiman, S.A. Hussain, T.R. Marzoog, M.S. Jabir, Synthesis, characterization and evaluation of anti-bacterial, anti-parasitic and anti-cancer activities of aluminum-doped zinc oxide nanoparticles. J. Inorg. Organomet. Polym. 30, 3677–3693 (2020)

    CAS  Google Scholar 

  9. M. Ijaz, M. Zafar, A. Islam, S. Afsheen, T. Iqbal, A review on antibacterial properties of biologically synthesized zinc oxide nanostructures. J. Inorg. Organomet. Polym. 30, 2815–2826 (2020)

    CAS  Google Scholar 

  10. K.S. Khashan, J.M. Taha, S.F. Abbas, Fabrication and properties of InN NPs/Si as a photodetector. Energy Procedia 119, 656–661 (2017)

    CAS  Google Scholar 

  11. K.S. Khashan, A. Hadi, M. Mahdi, M.K. Hamid, Nanosecond pulse laser preparation of InZnO (IZO) nanoparticles NPs for high-performance photodetector. Appl. Phys. A 125, 51 (2019)

    Google Scholar 

  12. A.A. Hadi, B.A. Badr, R.O. Mahdi, K.S. Khashan, Rapid laser fabrication of Nickel oxide nanoparticles for UV detector. Optik 219, 165019 (2020)

    CAS  Google Scholar 

  13. K.S. Khashan, M.S. Jabir, F.A. Abdulameer, Carbon nanoparticles prepared by laser ablation in liquid environment. Surf. Rev. Lett. 26, 1950078 (2019)

    CAS  Google Scholar 

  14. R.A. Ismail, K.S. Khashan, M.F. Jawad, A.M. Mousa, F. Mahdi, Preparation of low cost n-ZnO/MgO/p-Si heterojunction photodetector by laser ablation in liquid and spray pyrolysis. Mater. Res. Express 5, 055018 (2018)

    Google Scholar 

  15. S.S.N. Fernando, T.D.C.P. Gunaskara, J. Holton, Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan J. Infect. Dis. 8, 2 (2018)

    Google Scholar 

  16. R. Seifipour, M. Nozari, L. Pishkar, Green synthesis of silver nanoparticles using tragopogon collinus leaf extract and study of their antibacterial effects. J. Inorg. Organomet. Polym. 30, 2926–2936 (2020)

    CAS  Google Scholar 

  17. P. Moteriya, S. Chanda, Green synthesis of silver nanoparticles from caesalpinia pulcherrima leaf extract and evaluation of their antimicrobial, cytotoxic and genotoxic potential (3-in-1 System). J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01532-7

    Article  Google Scholar 

  18. S. Ghojavand, M. Madani, J. Karimi, Green synthesis, characterization and antifungal activity of silver nanoparticles using stems and flowers of felty germander. J. Inorg. Organomet. Polym. 30, 2987–2997 (2020)

    CAS  Google Scholar 

  19. K. Djeddou, M. Bouloudenine, H. Soualah Alila, M. Bououdina, Formation of silver nanoparticles by a novel irradiation method without a reducing agent and their impact on four pathogenic bacterial strains. J. Inorg. Organomet. Polym. 30, 3095–3104 (2020)

    CAS  Google Scholar 

  20. C.Y. San, M.D. Mashitah, Biosynthesis of silver nanoparticles from schizophyllum commune and in-vitro antibacterial and antifungal activity studies. J. Phys. Sci. 24, 83 (2013)

    CAS  Google Scholar 

  21. B. Reidy, A. Haase, A. Luch, K. Dawson, I. Lynch, Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6, 2295–2350 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. G. Thirumurugan, M.D. Dhanaraju, Silver nanoparticles: real antibacterial bullets, in Antimicrobial Agents, ed. by V. Babbarala (InTech, Rijeka, 2013)

    Google Scholar 

  23. K.D. Deb, M. Griffith, E.D. Muinck, M. Rafat, Nanotechnology in stem cells research: advances and applications. Front Biosci 17, 1747–1760 (2012)

    CAS  Google Scholar 

  24. B. Palb, Nanomedicine, nanotechnology in medicine. C R Phys. 12, 620–636 (2011)

    Google Scholar 

  25. A. Cavalcanti, B. Shirinzadeh, R.A. Fretias, T. Hogg, Nanorobot Architecture for Medical Target Identification. Nanotechnology 19, 1 (2008)

    Google Scholar 

  26. Wils, What is ionic silver? Purest Colloids (2019). https://www.purestcolloids.com/ionic.php

  27. Siocs, Scientific information on colloidal silver. Silver Colloids (2019). https://www.silver-colloids.com/

  28. K. Safavi, M. Esfahanizadeh, D.H. Mortazaeinezahad, H. Dastjerd, The study of nano silver (NS) antimicrobial activity and evaluation of using NS in tissue culture media. Int. Conf. Life Sci. Technol. IPCBEE 3, 159–161 (2011)

    Google Scholar 

  29. N. Hachicho, P. Hoffmann, K. Ahlert, H.J. Heipieper, Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiol. Lett. 355, 71–77 (2014)

    CAS  PubMed  Google Scholar 

  30. M. Ansari, H.M. Khan, A.A. Khan, M.K. Amad, A.A. Mahdi, R. Pal, S.S. Cameotra, Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. J. Basic Microbiol. 54, 905–915 (2014)

    CAS  PubMed  Google Scholar 

  31. P. Phillips, Q. Yang, S. Davis, E.M. Sampson, J.I. Azeke, A. Hamad, G.S. Schultz, Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants. Int. Wound J. 12, 469–483 (2013)

    PubMed  Google Scholar 

  32. S. Kim, J.E. Choi, J. Choi, K.H. Chung, K. Park, J. Yi, D. Ryu, Oxidative stress-dependent toxicity of silver nanoparticles in hunman hepatoma cells. Toxicol In Vitro 23, 1076–1084 (2009)

    CAS  PubMed  Google Scholar 

  33. A. Parveen, S. Aashis, S. Rao, Biosynthesis and characterization of silver nanoparticles from cassia auriculata leaf extract and in vitro evalution of antimicrobial activity. Int. J. Appl. Biol. Pharm. Technol. 3, 222–228 (2012)

    CAS  Google Scholar 

  34. D. Chudobova, D. Maskova, L. Nejdl, P. Kopel, M. Rodrigo, V. Adam, R. Kizek, The effect of silver ions and silver nanoparticles on Staphylococcus aureus, in Microbial Pathogens and Strategies for Combating Them: Science, ed. by A. Méndez-Vilas (Technology and Education. Formatex, Badajoz, 2013)

    Google Scholar 

  35. S. Perera, B. Bhushan, R. Bandara, G. Rajapakse, S. Rajapakse, C. Bandara, Morphological, antimicrobial, durability, and physical properties ofuntreated and treated textiles using silver-nanoparticles. Colloids Surf. A 436, 975–986 (2013)

    CAS  Google Scholar 

  36. J.R. Swathy, M. Sankar, A. Chaudhary, S. Aigal, S. Anshup, T. Pradeep, Antimicrobial silver: an unprecedented anion effect. Sci. Rep. 4, 1–5 (2014)

    Google Scholar 

  37. M. Akter, MdT Sikder, MdM Rahman, A.K.M.A. Ullah, K.F.B. Hossain, S. Banik, T. Hosokawa, T. Saito, M. Kurasaki, A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J. Adv. Res. 9, 1–16 (2018)

    CAS  PubMed  Google Scholar 

  38. L. Salvioni, E. Galbiati, V. Collico, G. Alessio, S. Avvakumova, F. Corsi, P. Tortora, D. Prosperi, M. Colombo, Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. Int. J. Nanomed. 12, 2517–2530 (2017)

    CAS  Google Scholar 

  39. Z. Huang, Z. Zeng, A. Chen, G. Zeng, R. Xiao, P. Xu, K. He, Z. Song, L. Hu, M. Peng, T. Huang, G. Chen, Differential behaviors of silver nanoparticles and silver ions towards cysteine: bioremediation and toxicity to Phanerochaete chrysosporium. Chemosphere 203, 199208 (2018)

    Google Scholar 

  40. V. Arya, R. Komal, M. Kaur, A. Goyal, Silver anoparticles as a potent antimicrobial agent: a review. Pharmacologyonline 3, 118–124 (2011)

    Google Scholar 

  41. R. Salomoni, P. Leo, M.F.A. Rodrigues, Antibacterial activity of silver nanoparticles (AgNPs) in Staphylococcus aureus and cytotoxicity effect in mammalian cells, in The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs, ed. by A. Méndez-Vilas (Badajoz, Formatex, 2015), pp. 851–857

    Google Scholar 

  42. A.M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan, R. Venketesan, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 6, 103–109 (2010)

    CAS  Google Scholar 

  43. M. Dar, A. Ingle, M. Rai, Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine 9, 105–110 (2013)

    CAS  PubMed  Google Scholar 

  44. C. Greulich, D. Braun, A. Peetsch, J. Diendorf, B. Siebers, M. Epple, M. Koller, The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv. 2, 6981–6987 (2012)

    CAS  Google Scholar 

  45. A. Hamad, L. Li, Z. Liu, X.L. Zhong, H. Liu, W. Tao, Generation of silver titania nanoparticles from an Ag–Ti alloy via picosecond laser ablation and their antibacterial activities. RSC Adv. 5, 72981–72994 (2015)

    CAS  Google Scholar 

  46. A. Hamad, L. Li, Z. Liu, X.L. Zhong, W. Tao, Picosecond laser generation of Ag–TiO2 nanoparticles with reduced energy gap by ablation in ice water and their antibacterial activities. Appl. Phys. A 119, 1387–1396 (2015)

    CAS  Google Scholar 

  47. E. Morales-Avila, G. Ferro-Flores, B.E. Ocampo-García, G. López-Téllez, J. López-Ortega, D.G. Rogel-Ayala, D. Sánchez-Padilla, Antibacterial efficacy of gold and silver nanoparticles functionalized with the ubiquicidin (29–41) antimicrobial peptide. J. Nanomater. (2017). https://doi.org/10.1155/2017/5831959

    Article  Google Scholar 

  48. W. Njue, J.K. Kithokoi, S. Swaleh, J. Mburu, H. Mwangi, Green ultrasonic synthesis, characterization and antibacterial activity of silver and gold nanoparticles mediated by Ganoderma lucidum extract. J. Appl. Mater. Sci. Eng. Res. 4, 41 (2020)

    Google Scholar 

  49. J.M. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. De Aberasturi, I.R. De Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012)

    CAS  PubMed  Google Scholar 

  50. A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, A.M. Flank, Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 40, 6151–6156 (2006)

    CAS  PubMed  Google Scholar 

  51. J.S. Stefaan, P. Rivera-Gil, M. Jose-Maria, W.J. Parak, S.C. De Smedt, K. Brackmans, Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6, 446–465 (2011)

    Google Scholar 

  52. E.N. Andre, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessing, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009)

    Google Scholar 

  53. J.B. Ricco, O. Assadian, Antimicrobial silver grafts for prevention and treatment of vascular graft infection. Semin. Vasc. Surg. 24, 234–241 (2011)

    PubMed  Google Scholar 

  54. L.K. Nikolaj, O.Z. Andersen, R.E. Roge, T. Larsen, R. Petersen, J.F. Riis, Silver Nanoparticles (Institute for Physics and Nanotechnology, Aalborg University, Aalborg, 2005), p. 81

    Google Scholar 

  55. D. Xiaomei, Q. Guo, Y. Zhao, P. Zhang, T. Zhang, X. Zhang, C. Li, Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing. ACS Appl. Mater. Interfaces 8, 25798–25807 (2016)

    Google Scholar 

  56. A.R. Katrina, H.J. Cho, H.F. Yeung, W. Fan, J.D. Schiffman, Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS Appl. Mater. Interfaces 8, 3032–3040 (2016)

    Google Scholar 

  57. W.R. Li, X.B. Xie, Q.S. Shi, S.S. Duan, Y.S. Ouyang, Y.B. Chen, Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 1, 135–141 (2011)

    CAS  Google Scholar 

  58. W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park, Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 7, 2171–2178 (2008)

    Google Scholar 

  59. K.B. Holt, A.J. Bard, Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44, 13214–13223 (2005)

    CAS  PubMed  Google Scholar 

  60. C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.H. Tam, J.F. Chiu, C.M. Che, Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5, 916–924 (2006)

    CAS  PubMed  Google Scholar 

  61. C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.H. Tam, J.F. Chiu, C.M. Che, Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12, 527–534 (2007)

    CAS  PubMed  Google Scholar 

  62. H. Du, T.-M. Lo, J. Sitompul, M.W. Chang, Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance. Biochem. Biophys. Res. Commun. 424, 657–662 (2012)

    CAS  PubMed  Google Scholar 

  63. H.-J. Park, J.Y. Kim, J. Kim, H.-J. Lee, J.-S. Hahn, M.B. Gu, J. Yoon, Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 43, 1027–1032 (2009)

    CAS  PubMed  Google Scholar 

  64. J.R. Morones-Ramirez, J.A. Winkler, C.S. Spina, J.J. Collins, Silver enhances antibiotic activity against Gram-negative bacteria. Sci. Transl. Med. 5, 19081 (2013)

    Google Scholar 

  65. O. Gordon, S.T. Vig, P.S. Brunetto, A.E. Villaruz, D.E. Sturdevant, M. Otto, R. Landman, K.M. Fromm, Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob. Agents Chemother. 54, 4208–4218 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. P. Dibrov, J. Dzioba, K.K. Gosink, C.C. Hase, Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother. 46, 2668–2670 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. C.P. Randall, L.B. Oyama, J.M. Bostock, I. Chopra, A.J. Oneill, The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J. Antimicrob. Chemother. 68, 131–138 (2013)

    CAS  PubMed  Google Scholar 

  68. L.S. Nair, C.T. Laurencin, Nanofibers and nanoparticles for orthopaedic surgery applications. J. Bone Joint Surg. Am. 1, 128–131 (2008)

    Google Scholar 

  69. K. Chaloupka, Y. Malam, A.M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 28, 580–588 (2010)

    CAS  PubMed  Google Scholar 

  70. M. Yamanaka, K. Hara, J. Kudo, Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 71, 7589–7593 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. V.B. Alt, T. Steinrucke, P. Wagener, M. Seidel, P. Dingeldein, E. Domann, R. Schenttler, An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25, 4383–4391 (2004)

    CAS  PubMed  Google Scholar 

  72. S.B. Percival, D.P. Russell, Bacterial resistance to silver in wound care. J. Hosp. Infect. 60, 1–7 (2005)

    CAS  PubMed  Google Scholar 

  73. A.M. Cuin, A.C. Leite, C.Q. Sato, D.N. Neves, A. Szpoganicz, B. Silva, A.J. Bortouzzi, Synthesis, X-ray structure and antimycobacterial activity of silver complexes with alpha-hydroxycarboxylic acids. J. Inorg. Biochem. 101, 291–296 (2007)

    CAS  PubMed  Google Scholar 

  74. A.A. Taglietti, C.R. Dagostino, A. Dacarro, L. Montanaro, L. Campoccia, D. Cucca, L. Vercellino, M. Poggi, A. Pavicini, L. Visal, Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials 35, 1779–1788 (2014)

    CAS  PubMed  Google Scholar 

  75. O. Choi, K.K. Kim, J. Ross, L. Surampalli, R. Hu, The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42, 3066–3074 (2008)

    CAS  Google Scholar 

  76. H.L.X. Cao, F. Meng, P.K. Chu, Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 32, 693–705 (2011)

    CAS  PubMed  Google Scholar 

  77. O. Choi, Z. Hu, Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 42, 4583–4588 (2008)

    CAS  PubMed  Google Scholar 

  78. H.L.X. Cao, F. Meng, P.K. Chu, Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 670–684 (2010)

    CAS  PubMed  Google Scholar 

  79. N.W.H. Adams, J.R. Kramer, Silver speciation in wastewater effluent, surface waters, and pore waters. Environ Toxicol. Chem. 18, 2667–2673 (1999)

    CAS  Google Scholar 

  80. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Y.J.K.J. Lee, J. Oh, S. Bae, S. Lee, I.S. Hong, S.H. Kim, Ion-release kinetics and ecotoxicity effects of silver nanoparticles. Environ. Toxicol. Chem. 31, 155–159 (2012)

    CAS  PubMed  Google Scholar 

  82. M.N. Shahzad, N. Ahmed, Effectiveness of aloe vera gel compared with 1% silver sulphadiazine cream as burn wound dressing in second degree burns. J. Pak. Med. Assoc. 2, 225–230 (2013)

    Google Scholar 

  83. A. Kedziora, M. Speruda, E. Krzyzewska, J. Rybka, A. Łukowiak, G. Bugla-Ploskonska, Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci. 19, 444 (2018)

    PubMed Central  Google Scholar 

  84. E.I. Prieto, A.A. Kiat, The antimicrobial action of silver nanoparticles on Escherichia coli as revealed by atomic force microscopy. Philipp. Sci. Lett. 10, 123–129 (2017)

    Google Scholar 

  85. J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y.-S. Lee, D.H. Jeong, M.-H. Cho, Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95–101 (2007)

    CAS  Google Scholar 

  86. S.T.E. Sutterlin, A. Bergsten, A. Tallberg, B. Melhus, Effects of silver-based wound dressings on the bacterial flora in chronic leg ulcers and its susceptibility in vitro to silver. Acta Derm. Venereol. 92, 34–39 (2012)

    CAS  PubMed  Google Scholar 

  87. W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang, Y.B. Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115–1122 (2010)

    CAS  PubMed  Google Scholar 

  88. L.C.S. Maria, A.L.C. Santos, P.C. Oleira, A.S.S. Valle, Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polím. Ciênc. Tecnologia 20, 72–77 (2010)

    CAS  Google Scholar 

  89. S. Maiti, D. Krishnan, G. Barman, S.K. Ghosh, J.K. Laha, Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J. Anal. Sci. Technol. 5, 1–7 (2014)

    Google Scholar 

  90. F. Cunha, K.C. Maia, E.J.J. Mallman, M.C.S.O. Cunha, A.A.M. Macil, I.P. Souza, E.A. Menezes, P.B.A. Fechine, Silver nanoparticles-disk diffusion test against Escherichia coli isolates. Rev. Inst. Med. Trop. 58, 1–3 (2016)

    Google Scholar 

  91. K. Szczepanowicz, J. Stefanska, R.P. Socha, P. Warszynski, Preparation of silver nanoparticles via chemical reduuction and their antibacterial activity. Physicochem. Probl. Miner. Process 45, 85–98 (2010)

    CAS  Google Scholar 

  92. R. Das, S. Gang, S.S. Nath, Preparation and antibacterial activity of silver nanoparticles. J. Biomater. Nanobiotechnol. 2, 472–475 (2011)

    CAS  Google Scholar 

  93. A. Kushwaha, V.K. Singh, J. Bhartariya, P. Singh, K. Yasmeen, Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: Characterization of the particles and study of antibacterial activity. Eur J Exp Biol 5, 65–70 (2015)

  94. S.-H. Kim, H.-S. Lee, D.-S. Ryu, S.-J. Choi, D.-S. Lee, Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39, 77–85 (2011)

    CAS  Google Scholar 

  95. S. Liao, Y. Zhang, X. Pan, F. Zhu, C. Jiang, Q. Liu, Z. Cheng, G. Dai, G. Wu, L. Wang, L. Chen, Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed. 14, 1469–1487 (2019)

    CAS  Google Scholar 

  96. X. Yan, B. He, L. Liu, G. Qu, J. Shi, L. Hu, G. Jiangab, Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics 10, 557 (2018)

    CAS  PubMed  Google Scholar 

  97. M. Raffi, F. Hussain, T.M. Bhatti, J.I. Akhter, A. Hameed, M.M. Hasan, Antibacterial characterization of silver nanoparticles against E coli ATCC-15224. J. Mater. Sci. Technol. 24, 192–196 (2008)

    CAS  Google Scholar 

  98. Y.-H. Hsueh, K.-S. Lin, W.-J. Ke, C.-T. Hsieh, C.-L. Chiang, D.-Y. Tzou, S.-T. Liu, The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS ONE 10, 1–17 (2015)

    Google Scholar 

  99. M.R. Nateghi, H. Hajimirzababa, Effect of silver nanoparticles morphologies on antimicrobial properties of cotton fabrics. J. Text. Inst. 105, 806–813 (2014)

    CAS  Google Scholar 

  100. T. Theivasanthi, M. Alagar, Studies of copper nanoparticles effects on micro-organisms. Ann. Biol. Res. 2, 368–373 (2011)

    CAS  Google Scholar 

  101. C.Y. San, M.M. Don, Biosynthesis of silver nanoparticles from schizophyllum commune and in-vitro antibacterial and antifungal activity studies. J. Phys. Sci. 24, 83–96 (2013)

    CAS  Google Scholar 

  102. C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanoparticles and potential implications for human health and the environment. J. Nanopart. Res. 12, 1531–1551 (2010)

    CAS  Google Scholar 

  103. J.R.E. Morones, J.L. Camacho, A. Holt, K. Kouri, J.T. Ramirez, M.J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005)

    CAS  PubMed  Google Scholar 

  104. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interfaces Sci. 275, 177–182 (2004)

    CAS  Google Scholar 

  105. J.J. Naddeo, M. Ratti, S.M. Omalley, C.J. Griepenburg, D.M. Bubb, E.A. Klein, Antibacterial properties of nanoparticles: a comparative review of chemically synthesized and laser-generated particles. Adv. Sci. Eng. Med. 7, 1044–1057 (2015)

    CAS  Google Scholar 

  106. A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J. Nanomater. 2015, 720654 (2015)

    Google Scholar 

  107. Y. Jeong, D. Lim, J. Choi, Assessment of size-dependent antimicrobial and cytotoxic properties of silver nanoparticles. Adv. Mater. Sci. Eng. 2014, 763807 (2014)

    Google Scholar 

  108. Y. Syu, J.H. Hung, J.C. Chen, H.W. Chuang, Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem. 83, 57–64 (2014)

    CAS  PubMed  Google Scholar 

  109. Y. Qing, L. Cheng, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, Y. Qin, Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 13, 3311–3327 (2018)

    CAS  Google Scholar 

  110. X. Gan, T. Liu, J. Zhong, X. Liu, G. Li, Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin. ChemBioChem 5, 1686–1691 (2004)

    CAS  PubMed  Google Scholar 

  111. F.J. Osonga, A. Akgul, I. Yazgan, A. Akgul, G.B. Eshun, L. Sakhaee, O.A. Sadik, Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: a model study as potential fungicides. Molecules 25, 2682 (2020)

    CAS  Google Scholar 

  112. D.B. Hamal, K.J. Klabunde, Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J. Colloid Interfaces Sci. 311, 514–522 (2007)

    CAS  Google Scholar 

  113. J.P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H. Luong, Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B 108, 16864–16869 (2004)

    CAS  Google Scholar 

  114. M.X. Yang, D.H. Gracias, P.W. Jacobs, G.A. Somorjai, Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies. Langmuir 14, 1458–1464 (1998)

    CAS  Google Scholar 

  115. S. Rezaei-Zarchi, A.A. Saboury, P. Norouzi, J. Hong, S. Ahmadian, M. Ganjali, A.A. Moosavi-Movahedi, A.B. Moghaddam, A. Javed, Use of silver nanoparticles as an electron transfer facilitator in electrochemical ligand-binding of haemoglobin. J. Appl. Electrochem. 37, 1021–1026 (2007)

    CAS  Google Scholar 

  116. Y. Ju-Nam, J.R. Lead, Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 400, 396–414 (2008)

    CAS  PubMed  Google Scholar 

  117. G. Schmid, B. Corain, Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur. J. Inorg. Chem. 17, 3081–3098 (2003)

    Google Scholar 

  118. M. Brust, C.J. Kiely, Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf. A 202, 175–186 (2002)

    CAS  Google Scholar 

  119. H. Haick, Chemical sensors based on molecularly modified metallic nanoparticles. J. Phys. D 40, 7173 (2007)

    CAS  Google Scholar 

  120. R. Czajka, Development of medical textile market. Fibres Text. Eastern Europe 13, 13–15 (2005)

    Google Scholar 

  121. H.J. Lee, S.Y. Yeo, S.H. Jeong, Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38, 2199–2204 (2003)

    CAS  Google Scholar 

  122. H.J. Lee, S.H. Jeong, Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Text. Res. J. 75, 551–556 (2005)

    CAS  Google Scholar 

  123. A. Ravindran, P. Chandran, S.S. Khan, Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf. B 105, 342–352 (2012)

    Google Scholar 

  124. K. Sarkar, S.L. Banerjee, P.P. Kundu, G. Madrasa, K. Chatterjee, Biofunctionalized surface-modified silver nanoparticles for gene delivery. J. Mater. Chem. B 3, 5266–5276 (2015)

    CAS  PubMed  Google Scholar 

  125. N. Duran, P.D. Marcato, G.I. De Souza, O.L. Alves, E. Esposito, Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3, 203–208 (2007)

    CAS  Google Scholar 

  126. V. Thomas, M. Bajpal, S.K. Bajpal, In situ formation of silver nanoparticles within chitosan-attached cotton fabric for antibacterial property. J. Ind. Text. 40, 229–245 (2011)

    CAS  Google Scholar 

  127. M. Gorjanc, V. Bukosek, M. Gorensek, M. Mozetic, CF4 plasma and silver functionalized cotton. Text. Res. J. 80, 20 (2010)

    Google Scholar 

  128. M. Gorjanc, V. Bukosek, M. Gorensek, A. Vesel, The influence of water vapor plasma treatment on specific properties of bleached and mercerized cotton fabric. Text. Res. J. 80, 557–567 (2010)

    CAS  Google Scholar 

  129. L. Hadad, N. Perkas, Y. Gofer, J. Calderon-Moreno, A. Ghule, A. Gedanken, Sonochemical deposition of silver nanoparticles on wool fibers. J. Appl. Polym. Sci. 104, 1732–1737 (2007)

    CAS  Google Scholar 

  130. H.Y. Ki, J.H. Kim, S.C. Kwon, S.H. Jeong, A study on multifunctional wool textiles treated with nano-sized silver. J. Mater. Sci. 42, 8020–8024 (2007)

    CAS  Google Scholar 

  131. S.T. Dubas, P. Kumlangdudsana, P. Potiyaraj, Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf. A 289, 105–109 (2006)

    CAS  Google Scholar 

  132. R. Dastjerdi, M. Montazer, S. Shahsavan, A new method to stabilize nanoparticles on textile surfaces. Colloids Surf. A 345, 202–210 (2009)

    CAS  Google Scholar 

  133. L.S. Devi, S.R. Joshi, Antimicrobial and synergistic effects of silver nanoparticles synthesized using: soil fungi of high altitudes of Eastern Himalaya. Mycobiology 40, 27–34 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  134. T.V. Bukreeva, B.V. Parakhonsky, A.G. Skirtach, A.S. Susha, G.B. Sukhorukov, Preparation of polyelectrolyte microcapsules with silver and gold nanoparticles in a shell and the remote destruction of microcapsules under laser irradiation. Crystallogr. Rep. 51, 863–869 (2006)

    CAS  Google Scholar 

  135. A. Hamad, L. Li, Z. Liu, X.L. Zhong, W. Tao, Sequential laser and ultrasonic wave generation of TiO2@Ag core-shell nanoparticles and their anti-bacterial properties. Lasers Med. Sci. 31, 263–273 (2016)

    PubMed  Google Scholar 

  136. J. Li, B. Xie, K. Xia, Y. Li, J. Han, C. Zhao, Enhanced antibacterial activity of silver doped titanium dioxide-chitosan composites under visible light. Materials 11, 1403–1420 (2017)

    Google Scholar 

  137. G.Y. Nigussie, G.M. Tesfamariam, B.M. Tegegne, Y.A. Weldemichel, T.W. Gebreab, D.G. Gebrehiwot, G.E. Gebremichel, Antibacterial activity of Ag-doped TiO2 and Ag-doped ZnO nanoparticles. Int. J. Photoenergy 1, 1–7 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khawla S. Khashan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, A., Khashan, K.S. & Hadi, A. Silver Nanoparticles and Silver Ions as Potential Antibacterial Agents. J Inorg Organomet Polym 30, 4811–4828 (2020). https://doi.org/10.1007/s10904-020-01744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01744-x

Keywords

Navigation