Skip to main content
Log in

Effects of CdS Nanoparticles on the Physical Properties of T-CdS Nanocomposite Materials

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, has been studied the effects of CdS nanoparticles at different concentrations on the microstructure and optical properties of TiO2/CdS nanocomposites (T-CdS). The structural properties of T-CdS samples were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM). XRD analysis confirms the hexagonal wurtzite phase structure of CdS nanoparticles and the tetragonal anatase phase of TiO2 nanoparticles. TEM images appear the shapes and sizes of TiO2, CdS nanoparticles and T-CdS nanocomposite, where found in aggregates nanoparticles their sizes from 15 to 56 nm. By UV–vis diffuse reflectance spectrum (DRS) were determined Band-gap energies of the samples. The Photoluminescence (PL) analysis exposed, with the excitation wavelength of 285 nm, our samples exhibited the intensity of peak at 426 nm. Additionally, the FTIR spectroscopy of the samples exhibits‎ the presence of functional groups. The thermal stability of T-CdS nanocomposite samples were determined by thermogravimetric and differential thermal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard Mater. 177, 70–80 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  PubMed  Google Scholar 

  2. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014). https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  3. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9

    Article  CAS  Google Scholar 

  4. P. Zheng, J. Zhao, J. Zheng, G. Ma, Z. Zhu, Non-equilibrium partial oxidation of TiN surface for efficient visible-light-driven hydrogen production. J. Mater. Chem. 22, 12116–12120 (2012). https://doi.org/10.1039/c2jm30662j

    Article  CAS  Google Scholar 

  5. Z. Xie, X. Liu, P. Zhan, W. Wang, Z. Zhang, Tuning the optical bandgap of TiO2-TiN composite films as photocatalyst in the visible light. AIP Adv. 3, 062129 (2013). https://doi.org/10.1063/1.4812702

    Article  CAS  Google Scholar 

  6. A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. J. Photochem. Photobiol. A 360, 34–43 (2018). https://doi.org/10.1016/j.jphotochem.2018.04.021

    Article  CAS  Google Scholar 

  7. F. Chen, S.-W. Wang, L. Yu, X. Chen, W. Lu, Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings. Opt. Mater. Express 4, 1833 (2014). https://doi.org/10.1364/ome.4.001833

    Article  CAS  Google Scholar 

  8. B. Li, Z. Zhao, F. Gao, X. Wang, J. Qiu, Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed {001} facets for improved visible light photocatalytic activity. Appl. Catal. B 147, 958–964 (2014). https://doi.org/10.1016/j.apcatb.2013.10.027

    Article  CAS  Google Scholar 

  9. R. Campostrini, M. Ischia, L. Palmisano, Pyrolysis study of sol-gel derived TiO2 powders. Part III. TiO2-anatase prepared by reacting titanium(IV) isopropoxide with acetic acid. J. Therm. Anal. Calorim. 75, 13–24 (2004). https://doi.org/10.1023/B:JTAN.0000017324.05515.b9

    Article  CAS  Google Scholar 

  10. H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M.R. Lukatskaya, Y. Gogotsi, M.L. Taheri, In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J. Mater. Chem. A 2, 14339–14343 (2014). https://doi.org/10.1039/c4ta02583k

    Article  CAS  Google Scholar 

  11. C.X. Tian, J.Q. Du, X.H. Chen, W.P. Ma, Z.Q. Luo, X.Z. Cheng, H.F. Hu, D.J. Liu, Influence of hydrolysis in sulfate process on titania pigment producing. Trans. Nonferr. Metals Soc. China (Engl. Ed.) 19, s829–s833 (2009). https://doi.org/10.1016/S1003-6326(10)60160-4

    Article  CAS  Google Scholar 

  12. S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, S.K. Kim, W.I. Lee, Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem. Mater. 15, 3326–3331 (2003). https://doi.org/10.1021/cm030171d

    Article  CAS  Google Scholar 

  13. Y.F. You, C.H. Xu, S.S. Xu, S. Cao, J.P. Wang, Y.B. Huang, S.Q. Shi, Structural characterization and optical property of TiO2 powders prepared by the sol-gel method. Ceram. Int. 40, 8659–8666 (2014). https://doi.org/10.1016/j.ceramint.2014.01.083

    Article  CAS  Google Scholar 

  14. H. Xu, J. Jia, S. Zhao, P. Chen, Q. Xia, J. Wu, P. Zhu, Hydrophobic TiO2-SiO2 aerogel composites for fast removal of organic pollutants. ChemistrySelect 3, 10483–10490 (2018). https://doi.org/10.1002/slct.201801646

    Article  CAS  Google Scholar 

  15. V.G. Parale, H.N.R. Jung, W. Han, K.Y. Lee, D.B. Mahadik, H.H. Cho, H.H. Park, Improvement in the high temperature thermal insulation performance of Y2O3 opacified silica aerogels. J. Alloys Compd. 727, 871–878 (2017). https://doi.org/10.1016/j.jallcom.2017.08.189

    Article  CAS  Google Scholar 

  16. I. Lázár, J. Kalmár, A. Peter, A. Szilágyi, E. Gyori, T. Ditrói, I. Fábián, Photocatalytic performance of highly amorphous titania-silica aerogels with mesopores: the adverse effect of the in situ adsorption of some organic substrates during photodegradation. Appl. Surf. Sci. 356, 521–531 (2015). https://doi.org/10.1016/j.apsusc.2015.08.113

    Article  CAS  Google Scholar 

  17. G. Zu, J. Shen, W. Wang, L. Zou, Y. Lian, Z. Zhang, Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds. ACS Appl. Mater. Interfaces 7, 5400–5409 (2015). https://doi.org/10.1021/am5089132

    Article  CAS  PubMed  Google Scholar 

  18. Y.N. Kim, G.N. Shao, S.J. Jeon, S.M. Imran, P.B. Sarawade, H.T. Kim, Sol-gel synthesis of sodium silicate and titanium oxychloride based TiO2TiO2-SiO2 aerogels and their photocatalytic property under UV irradiation. Chem. Eng. J. 231, 502–511 (2013). https://doi.org/10.1016/j.cej.2013.07.072

    Article  CAS  Google Scholar 

  19. S. Cao, N. Yao, K.L. Yeung, Synthesis of freestanding silica and titania-silica aerogels with ordered and disordered mesopores. J. Sol-Gel Sci. Technol. 46, 323–333 (2008). https://doi.org/10.1007/s10971-008-1701-8

    Article  CAS  Google Scholar 

  20. N. Yao, S. Cao, K.L. Yeung, Mesoporous TiO2-SiO2 aerogels with hierarchal pore structures. Microporous Mesoporous Mater. 117, 570–579 (2009). https://doi.org/10.1016/j.micromeso.2008.08.020

    Article  CAS  Google Scholar 

  21. T.C. Dang, D.L. Pham, H.C. Le, V.H. Pham, TiO2/CdS nanocomposite films: fabrication, characterization, electronic and optical properties. Adv. Nat. Sci. 1, 1689–1699 (2010). https://doi.org/10.1088/2043-6254/1/1/015002

    Article  CAS  Google Scholar 

  22. B. Gomathi Thanga Keerthana, P. Murugakoothan, Synthesis and characterization of CdS/TiO2 nanocomposite: methylene blue adsorption and enhanced photocatalytic activities. Vacuum. 159, 476–481 (2019). https://doi.org/10.1016/j.vacuum.2018.10.082

    Article  CAS  Google Scholar 

  23. M. Madani, K. Omri, N. Fattah, A. Ghorbal, X. Portier, Influence of silica ratio on structural and optical properties of SiO2/TiO2 nanocomposites prepared by simple solid-phase reaction. J. Mater. Sci. 28, 12977–12983 (2017). https://doi.org/10.1007/s10854-017-7129-6

    Article  CAS  Google Scholar 

  24. N. Alonizan, S. Rabaoui, K. Omri, R. Qindeel, Microstructure and luminescence properties of ZnO:Mn nano-particles and ZnO:Mn/TiO2 nano-composite synthesized by a two-step chemical method. Appl. Phys. A 124, 710 (2018). https://doi.org/10.1007/s00339-018-2127-y

    Article  CAS  Google Scholar 

  25. K. Omri, I. Najeh, LEl. Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940–8948 (2016). https://doi.org/10.1016/j.ceramint.2016.02.151

    Article  CAS  Google Scholar 

  26. K. Deka, M.P.C. Kalita, Microstructure analysis of chemically synthesized wurtzite-type CdS nanocrystals. Pramana 86, 1119–1126 (2016). https://doi.org/10.1007/s12043-015-1132-3

    Article  CAS  Google Scholar 

  27. D. Wang, B. Yu, F. Zhou, C. Wang, W. Liu, Synthesis and characterization of anatase TiO2 nanotubes and their use in dye-sensitized solar cells. Mater. Chem. Phys. 113, 602–606 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.011

    Article  CAS  Google Scholar 

  28. V. Loryuenyong, N. Jarunsak, T. Chuangchai, A. Buasri, The photocatalytic reduction of hexavalent chromium by controllable mesoporous anatase TiO2 nanoparticles. Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/348427

    Article  Google Scholar 

  29. K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym. Mater. 29, 203–212 (2019). https://doi.org/10.1007/s10904-018-0979-4

    Article  CAS  Google Scholar 

  30. S. Saravanan, M. Balamurugan, T. Soga, Synthesis of titanium dioxide nanoparticles with desired ratio of anatase and rutile phases and the effect of high temperature annealing. Trans. Mater. Res. Soc. Jpn. 43, 255–261 (2018). https://doi.org/10.14723/tmrsj.43.255

    Article  CAS  Google Scholar 

  31. T. Homann, T. Bredow, K. Jug, Adsorption of small molecules on the anatase (1 0 0) surface. Surf. Sci. 555, 135–144 (2004). https://doi.org/10.1016/j.susc.2003.12.039

    Article  CAS  Google Scholar 

  32. J. Pei, W. Ma, R. Li, Y. Li, H. Du, Preparation and photocatalytic properties of TiO2-Al2O3 composite loaded catalysts. J. Chem. (2015). https://doi.org/10.1155/2015/806568

    Article  Google Scholar 

  33. S.Y. Ha, H.J. Kim, S. Nam, S.Y. Oh, C. Lim, I.G. Kim, D.S. Yoo, S.Y. Park, One-step synthesis of TiO2/CdS nanocomposites by using microwave irradiation of a TiO2 + Cd2+-mercaptopropionic acid aqueous solution. J. Korean Phys. Soc. 64, 436–442 (2014). https://doi.org/10.3938/jkps.64.436

    Article  CAS  Google Scholar 

  34. A.L. Patterson, The scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  35. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  36. A. Khorsand Zak, W.H. Abd, M.E. Majid, R. Abrishami, Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  CAS  Google Scholar 

  37. M. Manickam, V. Ponnuswamy, C. Sankar, R. Mariappan, R. Suresh, Influence of substrate temperature on the properties of cobalt oxide thin films prepared by nebulizer spray pyrolysis (NSP) technique. Silicon 8, 351–360 (2016). https://doi.org/10.1007/s12633-015-9316-5

    Article  CAS  Google Scholar 

  38. N. Serpone, D. Lawless, R. Khairutdinov, Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor? J. Phys. Chem. 99, 16646–16654 (1995). https://doi.org/10.1021/j100045a026

    Article  CAS  Google Scholar 

  39. H. Tang, F. Lévy, H. Berger, P.E. Schmid, Urbach tail of anatase TiO2. Phys. Rev. B. 52, 7771–7774 (1995). https://doi.org/10.1103/PhysRevB.52.7771

    Article  CAS  Google Scholar 

  40. V.D.-M.Ž Barbarić-Mikočević, K. Itrić, Kubelka-Munk theory in describing optical properties of paper (I). Tech. Gaz. 18, 117–124 (2011)

    Google Scholar 

  41. G.H. Meetent, P. Wood, Optical fibre methods for measuring the diffuse reflectance of fluids. Eng. Opt. 6, 331–336 (1993)

    Google Scholar 

  42. Z. Jiang, K. Qian, C. Zhu, H. Sun, W. Wan, J. Xie, H. Li, P.K. Wong, S. Yuan, Carbon nitride coupled with CdS-TiO2 nanodots as 2D/0D ternary composite with enhanced photocatalytic H2 evolution: a novel efficient three-level electron transfer process. Appl. Catal B 210, 194–204 (2017). https://doi.org/10.1016/j.apcatb.2017.03.069

    Article  CAS  Google Scholar 

  43. G. He, Y. Zhang, Q. He, MoS2 /CdS heterostructure for enhanced photoelectrochemical performance under visible light. Catalysts 9, 19–21 (2019). https://doi.org/10.3390/catal9040379

    Article  CAS  Google Scholar 

  44. K. Omri, A. Bettaibi, K. Khirouni, L. El, Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Physica B 537, 167–175 (2018). https://doi.org/10.1016/j.physb.2018.02.025

    Article  CAS  Google Scholar 

  45. G. Rajakumar, A.A. Rahuman, S.M. Roopan, V.G. Khanna, G. Elango, C. Kamaraj, A.A. Zahir, K. Velayutham, Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim. Acta A 91, 23–29 (2012). https://doi.org/10.1016/j.saa.2012.01.011

    Article  CAS  Google Scholar 

  46. P.C. Dey, R. Das, Ligand free surface of CdS nanoparticles enhances the energy transfer efficiency on interacting with Eosin Y dye – helping in the sensing of very low level of chlorpyrifos in water. Spectrochim. Acta A 207, 156–163 (2019). https://doi.org/10.1016/j.saa.2018.09.014

    Article  CAS  Google Scholar 

  47. N.S. Kumar, S.K.N. Kumar, L. Yesappa, Structural, optical and conductivity study of hydrothermally synthesized TiO2 nanorods. Mater. Res. Exp. 7, 0–11 (2020). https://doi.org/10.1088/2053-1591/ab691f

    Article  CAS  Google Scholar 

  48. M.L. Hu, M.H. Fang, C. Tang, T. Yang, Z.H. Huang, Y.G. Liu, X.W. Wu, X. Min, The effects of atmosphere and calcined temperature on photocatalytic activity of TiO2 nanofibers prepared by electrospinning. Nanoscale Res. Lett. 8, 1–9 (2013). https://doi.org/10.1186/1556-276X-8-548

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is a part of a project from The Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, Saudi Arabia (To Dr Norah Alonizan, Grant No: 2019-083-Sc).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norah Alonizan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonizan, N. Effects of CdS Nanoparticles on the Physical Properties of T-CdS Nanocomposite Materials. J Inorg Organomet Polym 31, 1086–1094 (2021). https://doi.org/10.1007/s10904-020-01722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01722-3

Keywords

Navigation