Skip to main content
Log in

Novel N-(2-((4-vinylbenzyl)thio)ethyl)Acetamide Functionalized Magnetite Nanoparticle: Synthesis and Test Selective Silver(I) Removal Study

Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles embody a valuable suite of technologies for the selective recovery of metals from the aqueous phase owing to their high surface area, the ease of recovery using an externally applied magnetic field and their ability to be custom designed. Ligands bearing sulfur (S-) and nitrogen (N-) donors are suited for such functionalization due to their proven selectivity’s for Ag(I) binding. Herein, we report the synthesis of a novel ligand—N-(2-((4-vinylbenzyl)thio)ethyl)acetamide in two steps and with a 76% yield. Also, the attachment of the ligand to the surface of magnetite nanoparticle with the aid of azobisisobutyronitrile (AIBN) was achieved under mild conditions. The ligand-magnetite nanosorbent demonstrated excellent removal efficiency (99.9%) and outstanding selectivity for Ag(I) recovery under the prevailing experimental conditions. Taking together, the results indicate that N-(2-((4-vinylbenzyl)thio)ethyl)acetamide on magnetite nanoparticles is an efficient sorbent for the selective recovery of Ag(I) from the aqueous phase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. Synthetic procedure to Fe3O4@BMTP@VTEA: A mixture of the Fe3O4@BMTP (40 mg), VTEA (160 mg, 0.68 mmol) and AIBN (8 mg, 0.05 mmol) in 4 mL toluene inside a 20 mL glass vial were sonicated at room temperature for 30 min and subsequently degassed for another 30 min. AIBN (24 mg, 0.146 mmol) was dissolved in toluene (3 mL) and degassed for 30 min. The AIBN solution was then added dropwise to the stirred mixture of the Fe3O4@BMTP and VTEA and warmed at 60 °C for 15 h. Subsequently, the resulting brown solid was magnetically separated and the supernatant decanted. Finally, the solids were washed with THF, magnetically separated and dried under reduced pressure of approximately 10 mbar and 40 °C to give Fe3O4@BMTP@VTEA.

References

  1. M. Sahan, M.A. Kucuker, B. Demirel, K. Kuchta, A. Hursthouse, Determination of metal content of waste mobile phones and estimation of their recovery potential in Turkey. Int. J. Environ. Res. Public Health 16, 887 (2019). https://doi.org/10.3390/ijerph16050887

    Article  CAS  PubMed Central  Google Scholar 

  2. G. Taillades, J. Sarradin, High performance anode for thin film lithium ion batteries. J. Power Sources 125, 199–205 (2004). https://doi.org/10.1016/j.jpowsour.2003.07.004

    Article  CAS  Google Scholar 

  3. B. Boonkaew, M. Kempf, R. Kimble, P. Supaphol, L. Cuttle, Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: acticoatTM and PolyMem Silver®. Burns 40, 89–96 (2014). https://doi.org/10.1016/j.burns.2013.05.011

    Article  PubMed  Google Scholar 

  4. P. Verma, Y. Kuwahara, K. Mori, H. Yamashita, Design of silver-based controlled nanostructures for plasmonic catalysis under visible light irradiation. Bull. Chem. Soc. Jpn 92, 19–29 (2019). https://doi.org/10.1246/bcsj.20180244

    Article  CAS  Google Scholar 

  5. A. Kędziora, M. Speruda, E. Krzyżewska, J. Rybka, A. Łukowiak, G. Bugla-Płoskońska, Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci. 19, 444 (2018). https://doi.org/10.3390/ijms19020444

    Article  CAS  PubMed Central  Google Scholar 

  6. Silver supply may be at risk. In: BMG Gr. Inc. https://bmg-group.com/silver-supply-may-be-at-risk/. Accessed 11 Jul 2020

  7. (2012) Is future silver supply at risk? In: Invest. News. https://investingnews.com/daily/resource-investing/precious-metals-investing/silver-investing/is-future-silver-supply-at-risk/. Accessed 11 Jul 2020

  8. H. Sverdrup, D. Koca, K. Vala, Resources, conservation and recycling investigating the sustainability of the global silver supply, reserves, stocks in society and market price using different approaches. Resour. Conserv. Recycl. 83, 121–140 (2014). https://doi.org/10.1016/j.resconrec.2013.12.008

    Article  Google Scholar 

  9. N.A. Kolpakova, Z.K. Sabitova, V.I. Sachkov, R.O. Medvedev, R.A. Nefedov, V.V. Orlov, Determination of Au(III) and Ag(I) in carbonaceous shales and pyrites by stripping voltammetry. Minerals 9, 1–13 (2019). https://doi.org/10.3390/min9020078

    Article  CAS  Google Scholar 

  10. K. Avarmaa, L. Klemettinen, H. O’Brien, P. Taskinen, Urban mining of precious metals via oxidizing copper smelting. Miner. Eng. 133, 95–102 (2019). https://doi.org/10.1016/j.mineng.2019.01.006

    Article  CAS  Google Scholar 

  11. R.A. Crane, D.E. Sinnett, P.J. Cleall, D.J. Sapsford, Physicochemical composition of wastes and co-located environmental designations at legacy mine sites in the south west of England and Wales: Implications for their resource potential. Resour. Conserv. Recycl. 123, 117–134 (2017). https://doi.org/10.1016/j.resconrec.2016.08.009

    Article  Google Scholar 

  12. A. Daubinet, P.T. Kaye, Designer ligands. VIII. Thermal and microwave-assisted synthesis of silver(I)-selective ligands. Synth. Commun. 32, 3207 (2002). https://doi.org/10.1081/SCC-120013745

    Article  CAS  Google Scholar 

  13. S. Virolainen, M. Tyster, M. Haapalainen, T. Sainio, Ion exchange recovery of silver from concentrated base metal-chloride solutions. Hydrometallurgy 152, 100–106 (2015). https://doi.org/10.1016/j.hydromet.2014.12.011

    Article  CAS  Google Scholar 

  14. H. Abdolmohammad-Zadeh, Z. Javan, Silica-coated Mn3O4 nanoparticles coated with an ionic liquid for use in solid phase extraction of silver(I) ions prior to their determination by AAS. Microchim. Acta 182, 1447–1456 (2015). https://doi.org/10.1007/s00604-015-1468-x

    Article  CAS  Google Scholar 

  15. M.A. Karimi, A. Hatefi-Mehrjardi, S.Z. Mohammadi, A. Mohadesi, M. Mazloum-Ardakani, A.A. Kabir, M. Kazemipour, N. Afsahi, Solid phase extraction of trace amounts of silver (I) using dithizone-immobilized alumina-coated magnetite nanoparticles prior to determination by flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 92, 1325–1340 (2012). https://doi.org/10.1080/03067319.2011.563385

    Article  CAS  Google Scholar 

  16. D. Dupont, W. Brullot, M. Bloemen, T. Verbiest, K. Binnemans, Selective uptake of rare earths from aqueous solutions by EDTA-functionalized magnetic and nonmagnetic nanoparticles. ACS Appl. Mater. Interfaces 6, 4980–4988 (2014). https://doi.org/10.1021/am406027y

    Article  CAS  PubMed  Google Scholar 

  17. K. Inoue, Y. Ooshita, T. Itaya, H. Nakahara, Silver ion-selective extraction and transport by polystyrene derivatives with pendant ethoxycyclotriphosphazene. Macromol. Chem. Phys. 198, 3173–3184 (1997). https://doi.org/10.1002/macp.1997.021981015

    Article  CAS  Google Scholar 

  18. K.C. Sole, J.B. Hiskey, Solvent extraction characteristics of thiosubstituted organophosphinic acid extractants. Hydrometallurgy 30, 345–365 (1992). https://doi.org/10.1016/0304-386X(92)90093-F

    Article  CAS  Google Scholar 

  19. R. Jalilian, A. Taheri, Synthesis and application of a novel core-shell-shell magnetic ion imprinted polymer as a selective adsorbent of trace amounts of silver ions. E-Polymers 18, 123–134 (2018). https://doi.org/10.1515/epoly-2017-0108

    Article  CAS  Google Scholar 

  20. X. Yin, J. Long, Y. Xi, X. Luo, Recovery of silver from wastewater using a new magnetic photocatalytic ion-imprinted polymer. ACS Sustain. Chem. Eng. 5, 2090–2097 (2017). https://doi.org/10.1021/acssuschemeng.6b01871

    Article  CAS  Google Scholar 

  21. A.D. Aderibigbe (2019) Synthesis and application of some Ag(I)-selective ligands and iron oxide/Ag(I)-selective composite nanoparticles. The University of Warwick

  22. J. Puig, C.E. Hoppe, L.A. Fasce, C.J. Pérez, Y. Piñeiro-Redondo, M. Bañobre-López, M.A. López-Quintela, J. Rivas, R.J.J. Williams, Superparamagnetic nanocomposites based on the dispersion of oleic acid-stabilized magnetite nanoparticles in a diglycidylether of bisphenol A-based epoxy matrix: magnetic hyperthermia and shape memory. J. Phys. Chem. C 116, 13421–13428 (2012). https://doi.org/10.1021/jp3026754

    Article  CAS  Google Scholar 

  23. Y. Sun, X. Ding, Z. Zheng, X. Cheng, X. Hu, Y. Peng, Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles. Eur. Polym. J. 43, 762–772 (2007). https://doi.org/10.1016/j.eurpolymj.2006.10.021

    Article  CAS  Google Scholar 

  24. K. Naka, A. Narita, H. Tanaka, Y. Chujo, M. Morita, T. Inubushi, I. Nishimura, J. Hiruta, H. Shibayama, M. Koga, S. Ishibashi, J. Seki, S. Kizaka-Kondoh, Biomedical applications of imidazolium cation-modified iron oxide nanoparticles. Polym. Adv. Technol. 19, 1421–1429 (2008). https://doi.org/10.1002/pat.1218

    Article  CAS  Google Scholar 

  25. R.G. Pearson, Hard and soft acids and bases, HSAB, part I: fundamental principles. J. Chem. Educ. 45, 581–587 (1968). https://doi.org/10.1021/ed045p581

    Article  CAS  Google Scholar 

  26. M.V. Nsom, E.P. Etape, J.F. Tendo, B.V. Namond, P.T. Chongwain, M.D. Yufanyi, N. William, A green and facile approach for synthesis of starch-pectin magnetite nanoparticles and application by removal of methylene blue from textile effluent. J. Nanomater. (2019). https://doi.org/10.1155/2019/4576135

    Article  Google Scholar 

  27. Thermoscientific sulfur. https://xpssimplified.com/elements/sulfur.php. Accessed 11 Jul 2020

Download references

Funding

The author would like to thank The UK Commonwealth Scholarship Commission for funding the research under Grant Number NGCS-2015-448.

Author information

Authors and Affiliations

Authors

Contributions

ADA: Experimental design, investigation, data curation and manuscript writing, AJC: Experimental design, supervision.

Corresponding author

Correspondence to Abiodun D. Aderibigbe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aderibigbe, A.D., Clark, A.J. Novel N-(2-((4-vinylbenzyl)thio)ethyl)Acetamide Functionalized Magnetite Nanoparticle: Synthesis and Test Selective Silver(I) Removal Study. J Inorg Organomet Polym 30, 4803–4808 (2020). https://doi.org/10.1007/s10904-020-01716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01716-1

Keywords

Navigation