Skip to main content
Log in

Thermal and Mechanical Properties of HDPE Reinforced with Al2O3 Nanoparticles Processed by Thermokinectic Mixer

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polymer nanocomposites are a promising area of research due to quite superior to the conventional composites. However, obtaining a homogeneous distribution of the nanoparticles in the matrix has been a great challenge. Standard processing techniques of nanocomposites are non-practical, requiring longer periods and can affect both mechanical and thermal properties of the final product. The thermokinectic mixer is an interesting alternative due to its high-speed rotation leading to a better dispersion of the nanoparticle without compromising the polymer properties. This paper reports for the first time a nanocomposite of high-density polyethylene (HDPE)/Al2O3 processed by the thermokinetic mixer. The addition of Al2O3 nanoparticle (0 to 4% wt) to the HDPE led to an increase in both the melting and crystallization temperature. It was also observed an improvement of the mechanical properties due to the increase in the crystallinity degree, which is a consequence of the multiple nucleation sites of Al2O3 nanoparticles. An optimal composition was obtained at 4% wt of Al2O3. Thus, the nanocomposites processed by the thermokinetic mixer demonstrated a significant enhancement of the mechanical and thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.A.T., Int. J. Res. Eng. Technol. 4, 92 (2015)

  2. M.T.H. Mosavian, A. Bakhtiari, S. Sahebian, Polym. Plast. Technol. Eng. 51, 214 (2012)

    Article  CAS  Google Scholar 

  3. I. Ahmad, H. Cao, H. Chen, H. Zhao, A. Kennedy, Y. Qiu, J. Eur. Ceram. Soc. 30, 865–873 (2009)

    Article  Google Scholar 

  4. G.C. da Cunha, C.M. Abreu, J.A. Peixoto, L.P.C. Romão, Z.S. Macedo, J. Inorg. Organomet. Polym. Mater. 27, 674 (2017)

    Article  Google Scholar 

  5. O.L. Ighodaro, O.I. Okoli, Int. J. Appl. Ceram. Technol. 5, 312 (2008)

    Article  Google Scholar 

  6. N. Singh, R. Singh, R. Kumar, Eng. Res. Express 1, 015007 (2019)

  7. A. Roberto, S. Patricia, B. A. Marinkovic, J. Mater. Sci. 49, 7870 (2014)

  8. B. Basu, D. Jain, N. Kumar, P. Choudhury, A. Bose, S. Bose, J. Appl. Polym. 121, 2500 (2011)

    Article  CAS  Google Scholar 

  9. X. Wang, R. Song, Y. Chen, Y. Zhao, K. Zhu, X. Yuan, Compos. Sci. Technol. 164, 103 (2018)

    Article  CAS  Google Scholar 

  10. S.A.B. Lins, M.C.G. Rocha, J. Thermoplast. Compos. Mater. 32, 1566 (2018)

    Article  Google Scholar 

  11. S. Dabees, B. Ahmed, Bioengineered 11, 679 (2018)

  12. S. Sathees Kumar, G. Kanagaraj, J. Inorg. Organomet. Polym. Mater. 26, 788 (2016)

    Article  CAS  Google Scholar 

  13. S. Zhang, X.Y. Cao, Y.M. Ma, Y.C. Ke, J.K. Zhang, F.S. Wang, Express Polym. Lett. 5, 581–590 (2011)

    Article  CAS  Google Scholar 

  14. D.R. Mulinari, H.J.C. Voorwald, M.O.H. Cioffi, M.L.C.P. Silva, J. Compos. Mater. 51, 1807 (2016)

    Article  Google Scholar 

  15. M. Šupová, G.S. Martynková, K. Barabaszová, Sci. Adv. Mater. 3, 1 (2011)

    Article  Google Scholar 

  16. R.F. Brandenburg, C.M. Lepienski, D. Becker, L. Antonio, F. Coelho, Materia (2017). https://doi.org/10.1590/s1517-707620170004.0222

    Article  Google Scholar 

  17. A.D. de Oliveira, C.A.G. Beatrice, Nanocompos-Recent Evol. (2018). https://doi.org/10.5772/intechopen.81329

    Article  Google Scholar 

  18. K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y.E. Sanz, J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló, M. Schmid, Nanomaterials 7, 74 (2017)

    Article  Google Scholar 

  19. T.G. Gopakumar, D.J.Y.S. Pagé, Polym. Eng. Sci. 44, 1162 (2004)

    Article  CAS  Google Scholar 

  20. T.G. Gopakumar, D.J.Y.S. Page, J. Appl. Polym. Sci. 96, 1557 (2005)

    Article  CAS  Google Scholar 

  21. J. Ozen, F. Inceoglu, K. Acatay, Y.Z. Manceloglu, Polym. Eng. Sci. 52, 1537 (2012)

  22. M.C. Kissinger-Kane (Thesis, 2007). https://www.researchgate.net/publication/252873193_Investigation_and_characterization_of_the_dispersion_of_nanoparticles_in_a_polymer_matrix_by_scattering_techniques. Accessed 10 Apr 2020

  23. J. Pelto, T. Verho, H. Ronkainen, K. Kaunisto, J. Metsäjoki, J. Seitsonen, M. Karttunen, Polym. Test. 77, 105897 (2019)

    Article  Google Scholar 

  24. A. Nabhan, A.K. Ameer, A. Rashed, Int. J. Adv. Sci. Technol. 28, 481–489 (2019)

    Google Scholar 

  25. X. Chen, J. Sha, T. Chen, H. Zhao, H. Ji, L. Xie, Y. Ma, Compos. Sci. Technol. 170, 7–14 (2018)

    Article  Google Scholar 

  26. M.F. Uddin, C.T. Sun, Compos. Sci. Technol. 70, 223 (2010)

    Article  CAS  Google Scholar 

  27. Z. Alsayed, R. Awad, M. Salem, Iran. Polym. J. (2020). https://doi.org/10.1007/s13726-020-00796-7

    Article  Google Scholar 

  28. A. Umar, E.S. Zainudin, S.M. Sapuan, J. Mech. Eng. Sci. 2, 198 (2012)

    Article  Google Scholar 

  29. K. Silva, C.A. Paskocimas, F.R. Oliveira, J. Therm. Anal. Calorim. 103, 267 (2015)

    Google Scholar 

  30. P. Patnaik, Handbook of preparative inorganic chemistry (McGraw-Hill, New York, 2002), p. 1125

    Google Scholar 

  31. W. Viratyaporn, R.L. Lehman, J. Therm. Anal. Calorim. 103, 267 (2011)

    Article  CAS  Google Scholar 

  32. A. Bekhoukh, M. Mekhloufi, R. Berenguer, A. Benyoucef, Colloid Polym. Sci. 294, 1877 (2016)

    Article  Google Scholar 

  33. W.R. Waldman, M.A. De Paoli, J.R. Arau, Polym. Degrad. Stab. 93, 1770 (2008)

    Article  Google Scholar 

  34. C. Shuai, X. Yuan, W. Yang, S. Peng, C. He, P. Feng, F. Qi, G. Wang, Polym. Test. 85, 106458 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by FAPERJ (E-26/260.026/2018 and E-26/010.001800/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniella R. Mulinari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, I.L.M., Zanini, N.C. & Mulinari, D.R. Thermal and Mechanical Properties of HDPE Reinforced with Al2O3 Nanoparticles Processed by Thermokinectic Mixer. J Inorg Organomet Polym 31, 220–228 (2021). https://doi.org/10.1007/s10904-020-01709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01709-0

Keywords

Navigation