Skip to main content

Advertisement

Log in

Structural and Mechanical Properties of Lithium Bismuth Borate Glasses Containing Molybdenum (LBBM) Together with their Glass–Ceramics

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study reports that MoO3 doped glasses (LBB) are produced by a melting traditional process and using the XRD diffractometer technique to check their states. FTIR spectral analysis has examined the functional groups of the glass matrix. FT-IR spectrums reveal that the BO3, BO4. BiO6 and MoO6 octahedral have been built up and structural unit BO3 was transformed into BO4. The mechanical characteristics were linked to the FT-IR spectrum results. Ultrasonic velocities, elastic modulus, density, and thermal stability increased, while molar volume decreased. The increase in these parameters is linked with [BO4] the formation of structural units, an increase the strength of Mo – O, and force constant is higher than Li – O, so glass rigidity increases. Therefore, the increase of MoO3 usually has a significant influence on the bridging oxygen (BO) formation in BBL glasses. The increase in thermal stability connected to an increase in average force constantly, and the replacement of Li–iO with Mo–O linkages. The bond dissociation energy of Li–Li (137.3 ± 6.3 kJ/mol) is much weaker than the dissociation energy of Mo–Mo (449 ± 1 kJ/mol). Lithium borate Li2B4O7 (diomignite) has been identified in all formed glass–ceramics. With the increasing MoO3, the intensity of diomignite diffraction peaks (Li2B4O7) was reduced and transformed into a less stable lithium borate (Li2B2O5) phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.S. Shaaban, Y.B. Saddeek, Effect of MoO3 Content on Structural, Thermal, Mechanical and Optical Properties of (B2O3-SiO2-Bi2O3-Na2O-Fe2O3) Glass System. Silicon 9(5), 785–793 (2017). https://doi.org/10.1007/s12633-017-9558-5

    Article  CAS  Google Scholar 

  2. N. Singh, K.J. Singh, K. Singh, H. Singh, Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nucl. Instrum. Methods Phys. Res., Sect. B 225, 305–309 (2004). https://doi.org/10.1016/j.nimb.2004.05.016

    Article  CAS  Google Scholar 

  3. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., Electronic Polarizability, Optical Basicity, Thermal, Mechanical and Optical Investigations of (65B2O3–30Li2O–5Al2O3) Glasses Doped with Titanate. Journal of Elec Materi 49, 2040–2049 (2020). https://doi.org/10.1007/s11664-019-07889-x

    Article  CAS  Google Scholar 

  4. Y.M. Moustafa, A.K. Hassan, G. El-Damrawi, N.G. Yevtushenko, Structural properties of V2O5-Li2O-B2O3 glasses doped with copper oxide. J. Non-Cryst. Solids 194(1–2), 34–40 (1996). https://doi.org/10.1016/0022-3093(95)00465-3

    Article  CAS  Google Scholar 

  5. M. Pal, B. Roy, M. Pal, Structural Characterization of Borate Glasses Containing Zinc and Manganese Oxides. Journal of Modern Physics 02(09), 1062–1066 (2011). https://doi.org/10.4236/jmp.2011.29129

    Article  CAS  Google Scholar 

  6. P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties (Molecular and Biomolecular Spectroscopy, Spectrochimica Acta Part A, 2018). https://doi.org/10.1016/j.saa.2018.08.038

    Book  Google Scholar 

  7. I.M. Sayyed, M. Kaky, G.D.K. Kawa, O. Agar, U.P. Gawai, O.S. Baki, Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non-Cryst. Solids 507, 30–37 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.12.010

    Article  CAS  Google Scholar 

  8. L.S. Rao, M.S. Reddy, D.K. Rao, N. Veeraiah, Influence of redox behavior of copper ions on dielectric and spectroscopic properties of Li2O–MoO3–B2O3: CuO glass system. Solid-State Sciences 11(2), 578–587 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.06.022

    Article  CAS  Google Scholar 

  9. K.S. Shaaban, S.M. Abo-Naf, M.E.M. Hassouna, Physical and Structural Properties of Lithium Borate Glasses Containing MoO3. Silicon 11, 2421–2428 (2019). https://doi.org/10.1007/s12633-016-9519-4

    Article  CAS  Google Scholar 

  10. K.S. Shaaban, S.M. Abo-naf, A.M. Abd Elnaeim, M.E.M. Hassouna, Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses. Appl. Phys. A 123(6), 457 (2017). https://doi.org/10.1007/s00339-017-1052-9

    Article  CAS  Google Scholar 

  11. P.K. Pothuganti, A. Bhogi, M.R. Kalimi, P.S. Reniguntla, Optical and AC conductivity characterization of alkaline earth borobismuthate glasses doped with nickel oxide. Optik, International Journal for Light and Electron Optics. (2020). https://doi.org/10.1016/j.ijleo.2020.165152

    Article  Google Scholar 

  12. K.S. Shaaban, Sayed Yousef, Optical properties of Bi2O3 doped borotellurite glasses and glass-ceramics. Optik - International Journal for Light and Electron Optics 203, 163976 (2020). https://doi.org/10.1016/j.ijleo.2019.163976

    Article  CAS  Google Scholar 

  13. P.K. Pothuganti, A. Bhogi, M.R. Kalimi et al., Physical and Optical Properties of Borobismuthate Glasses Containing Vanadium Oxide. Glass Phys Chem 46, 146–154 (2020). https://doi.org/10.1134/S1087659620020078

    Article  Google Scholar 

  14. L. Baia, R. Stefan, W. Kiefer, J. Popp, S. Simon, Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content. J. Non-Cryst. Solids 303(3), 379–386 (2002). https://doi.org/10.1016/s0022-3093(02)01042-6

    Article  CAS  Google Scholar 

  15. Sh Bale, N. Srinivas Rao, S. Rahaman, Spectroscopic studies of Bi2O3–Li2O–ZnO–B2O3 glasses. Solid State Sci. 10(3), 326–331 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.09.017

    Article  CAS  Google Scholar 

  16. E.A.A. Wahab, K.S. Shaaban, Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Materials Research Express 5(2), 025207 (2018). https://doi.org/10.1088/2053-1591/aaaee8

    Article  CAS  Google Scholar 

  17. A. Kaur, A. Khanna, F. González, C. Pesquera, B. Chen, Structural, optical, dielectric and thermal properties of molybdenum tellurite and borotellurite glasses. J. Non-Cryst. Solids 444, 1–10 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.04.033

    Article  CAS  Google Scholar 

  18. R. Iordanova, V. Dimitrov, Y. Dimitriev, D. Klissurski, Glass formation and structure of glasses in the V2O5–MoO3–Bi2O3 system. J. Non-Cryst. Solids 180(1), 58–65 (1994). https://doi.org/10.1016/0022-3093(94)90397-2

    Article  CAS  Google Scholar 

  19. G. Calas, M. Le Grand, L. Galoisy, D. Ghaleb, Structural role of molybdenum in nuclear glasses: an EXAFS study. J. Nucl. Mater. 322, 15–20 (2003). https://doi.org/10.1016/S0022-3115(03)

    Article  CAS  Google Scholar 

  20. A. Makishima, J.D. Mackenzie, Direct calculation of Young's modulus of glass. J. Non-Cryst. Solids 12(1), 35–45 (1973). https://doi.org/10.1016/0022-3093(73)90053-7

    Article  CAS  Google Scholar 

  21. A. Makishima, J.D. Mackenzie, Calculation of bulk modulus, shear modulus, and Poisson's ratio of glass. J. Non-Cryst. Solids 17(2), 147–157 (1975). https://doi.org/10.1016/0022-3093(75)90047-2

    Article  CAS  Google Scholar 

  22. W.M. Abd-Allah, H.A. Saudi, K.S. Shaaban et al., Investigation of structural and radiation shielding properties of 40B2O3–30PbO–(30–x) BaO-x ZnO glass system. Appl. Phys. A 125, 275 (2019). https://doi.org/10.1007/s00339-019-2574-0

    Article  CAS  Google Scholar 

  23. R.M. El-Sharkawy, K.S. Shaaban, R. Elsaman, E.A. Allam, A. El-Taher, M.E. Mahmoud, Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20–x) CdO based on nano metal oxides. J. Non-Cryst. Solids 528, 119754 (2020). https://doi.org/10.1016/j.jnoncrysol.2020

    Article  CAS  Google Scholar 

  24. A. Pan, A. Ghosh, A new family of lead–bismuthate glass with a large transmitting window. J. Non-Cryst. Solids 271(1–2), 157–161 (2000). https://doi.org/10.1016/s0022-3093(00)00111-3

    Article  CAS  Google Scholar 

  25. H.A. Saudi, W.M. Abd-Allah, K.S. Shaaban, Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J Mater Sci: Mater Electron 31, 6963–6976 (2020). https://doi.org/10.1007/s10854-020-03261-6

    Article  CAS  Google Scholar 

  26. K.S. Shaaban, M.S.I. Koubisy, H.Y. Zahran et al., Spectroscopic Properties, Electronic Polarizability, and Optical Basicity of Titanium-Cadmium Tellurite Glasses Doped with Different Amounts of Lanthanum. J Inorg Organomet Polym (2020). https://doi.org/10.1007/s10904-020-01640-4

    Article  Google Scholar 

  27. K.S. Shaaban, E.S. Yousef, S.A. Mahmoud et al., Mechanical, Structural, and Crystallization Properties in Titanate Doped Phosphate Glasses. J Inorg Organomet Polym (2020). https://doi.org/10.1007/s10904-020-01574-x

    Article  Google Scholar 

  28. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., Electronic polarizability, optical basicity, and mechanical properties of aluminum lead phosphate glasses. Opt Quant Electron 52, 125 (2020). https://doi.org/10.1007/s11082-020-2191-3

    Article  CAS  Google Scholar 

  29. K. Shaaban, E.A. Abdel Wahab, A.A. El-Maaref et al., Judd-Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J Mater Sci: Mater Electron 31, 4986–4996 (2020). https://doi.org/10.1007/s10854-020-03065-8

    Article  CAS  Google Scholar 

  30. K.S. Shaaban, E.S. Yousef, E.A. Abdel Wahab et al., Investigation of Crystallization and Mechanical Characteristics of Glass and Glass-Ceramic with the Compositions xFe2O3-35SiO2-35B2O3-10Al2O3-(20–x) Na2O. J. of Materi. Eng. and Perform. (2020). https://doi.org/10.1007/s11665-020-04969-6

    Article  Google Scholar 

  31. H.H. Somaily, K.S. Shaaban, S.A. Makhlouf et al., Comparative Studies on Polarizability, Optical Basicity and Optical Properties of Lead Borosilicate Modified with Titania. J Inorg. Organo. Met. Polym. (2020). https://doi.org/10.1007/s10904-020-01650-2

    Article  Google Scholar 

  32. D. Singh, K. Singh, G. Singh, Optical and structural properties of ZnO–PbO–B2O3 and ZnO–PbO–B2O3–SiO2 glasses. J. Phys.: Condens. Matter 20(7), 075228 (2008). https://doi.org/10.1088/0953-8984/20/7/075228

    Article  CAS  Google Scholar 

  33. A. Terczyńska-Madej, K. Cholewa-Kowalska, M. Łączka, Coordination and valence state of transition metal ions in alkali-borate glasses. Opt. Mater. 33(12), 1984–1988 (2011). https://doi.org/10.1016/j.optmat.2011.03.046

    Article  CAS  Google Scholar 

  34. M. Fabian, E. Svab, K. Krezhov, Network structure with mixed bond-angle linkages in MoO3–ZnO–B2O3 glasses: Neutron diffraction and reverse Monte Carlo modelling. J. Non-Cryst. Solids 433, 6–13 (2016). https://doi.org/10.1016/j.jnoncrysol.2015.11.023

    Article  CAS  Google Scholar 

  35. E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, Infrared reflectance spectra of lithium borate glasses. J. Non-Cryst. Solids 126(1–2), 52–67 (1990). https://doi.org/10.1016/0022-3093(90)91023-k

    Article  CAS  Google Scholar 

  36. G. El-Damrawi, K. El-Egili, Characterization of novel CeO2–B2O3 glasses, structure and properties. Phys. B 299(1–2), 180–186 (2001). https://doi.org/10.1016/s0921-4526(00)00593-7

    Article  CAS  Google Scholar 

  37. A.M. Efimov, Vibrational spectra, related properties, and structure of inorganic glasses. J. Non-Cryst. Solids 253(1–3), 95–118 (1999). https://doi.org/10.1016/s0022-3093(99)00409-3

    Article  CAS  Google Scholar 

  38. J. Wong, C.A. Angell, Glass Structure by Spectroscopy (Marcel Dekker, New York, 1976)

    Google Scholar 

  39. E.A. Abdel Wahab, K.S. Shaaban, R. Elsaman et al., Radiation shielding, and physical properties of lead borate glass doped ZrO2 nanoparticles. Appl. Phys. A 12, 125–869 (2019). https://doi.org/10.1007/s00339-019-3166-8

    Article  CAS  Google Scholar 

  40. Venkatesh, G., Meera, B. N., Eraiah, B (2018) Physical and optical property studies on Bi3+ ion containing vanadium sodium borate glasses. doi: 10.1063/1.5028811

  41. C. Julien, M. Massot, W. Balkanski, A. Krol, W. Nazarewicz, Infrared studies of the structure of borate glasses. Mater. Sci. Eng., B 3(3), 307–312 (1989). https://doi.org/10.1016/0921-5107(89)90026-3

    Article  Google Scholar 

  42. M. Kodama, Ultrasonic velocity in sodium borate glasses. J Mater Sci 26, 4048–4053 (1991). https://doi.org/10.1007/BF02402945

    Article  CAS  Google Scholar 

  43. U. Veit, C. Rüssel, Elastic properties of quaternary glasses in the MgO–CaO–Al2O3–SiO2 system: modeling versus measurement. J. Mater. Sci. 52, 8159–8175 (2017). https://doi.org/10.1007/s10853-017-1023-8

    Article  CAS  Google Scholar 

  44. Y.R. Luo, Comprehensive handbook of chemical bond energies (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  45. N. Chouard, D. Caurant, O. Majérus, N. Guezi-Hasni, J.-L. Dussossoy, R. Baddour-Hadjean, J.-P. Pereira-Ramos, Thermal stability of SiO2 –B2O3 –Al2O3 –Na2O–CaO glasses with high Nd2O3 and MoO3 concentrations. J. Alloy. Compd. 671, 84–99 (2016). https://doi.org/10.1016/j.jallcom.2016.02.063

    Article  CAS  Google Scholar 

  46. G.A. Khater, B.S. Nabawy, J. Kang, Y. Yue, M.A. Mahmoud, Magnetic and Electrical Properties of Glass and Glass-Ceramics Based on Weathered Basalt. Silicon. (2020). https://doi.org/10.1007/s12633-020-00391-8

    Article  Google Scholar 

  47. I. Kashif, A.A. Soliman, E.M. Sakr, A. Ratep, XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 113, 15–21 (2013). https://doi.org/10.1016/j.saa.2013.04.084

    Article  CAS  Google Scholar 

  48. J. Kang, J. Wang, J. Cheng, J. Yuan, Y. Hou, S. Qian, Crystallization behavior and properties of CaO-MgO-Al2O3-SiO2 glass-ceramics synthesized from granite wastes. J. Non-Cryst. Solids 457, 111–115 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.11.030

    Article  CAS  Google Scholar 

  49. T. Sugawara, R. Komatsu, S. Uda, LINEAR AND NONLINEAR OPTICAL PROPERTIES OF LITHIUM TETRABORATE. Solid Slate Communications. 107(5), 233–237 (1998)

    Article  CAS  Google Scholar 

  50. H. Masai, Structure Studies of BaO-TiO2-SiO2 Glass-Ceramics Using 29Si MAS NMR and Raman Spectroscopy. Bull. Chem. Soc. Jpn. 91(6), 950–956 (2018). https://doi.org/10.1246/bcsj.20180011

    Article  CAS  Google Scholar 

  51. B.S.R. Sastry, F.A. Hummel, Studies in Lithium Oxide Systems: V, Li2O-Li2O-B2O3. J. Am. Ceram. Soc. 42(5), 216–218 (1959). https://doi.org/10.1111/j.1151-2916.1959.tb15456.x

    Article  CAS  Google Scholar 

  52. J. Krogh-Moe, The crystal structure of lithium diborate, Li2O.2B2O3. Acta Crystallogr. A 15(3), 190–193 (1962). https://doi.org/10.1107/s0365110x6200050x

    Article  CAS  Google Scholar 

  53. R.F. Klevtsova, S.F. Solodovnikov, L.A. Glinskaya, V.I. Alekseev, K.M. Khal'baeva, E.G. Khajkina, Synthesis and crystal structural study of double molybdate Li8Bi2(MoO4)7. J. Struct. Chem. 38(1), 111–119 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P. 2/93/41

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. S. Shaaban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Rehim, A.F.A., Shaaban, K.S., Zahran, H.Y. et al. Structural and Mechanical Properties of Lithium Bismuth Borate Glasses Containing Molybdenum (LBBM) Together with their Glass–Ceramics. J Inorg Organomet Polym 31, 1057–1065 (2021). https://doi.org/10.1007/s10904-020-01708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01708-1

Keywords

Navigation