Skip to main content

Effect of Inclusion of MOF-Polymer Composite onto a Carbon Foam Material for Hydrogen Storage Application

Abstract

Despite the extensive studies done on the remarkable characteristics of metal–organic frameworks (MOFs) for gas storage applications, several issues still preclude their widespread commercial lightweight applications. In most cases, MOF materials are produced in powdery form and often require shaping to attain application-specific properties. Fabrication of MOF-polymer composites is considered an attractive approach for shaping MOF powders. In most cases, the final hybrid material retains the intrinsic adsorbing properties of the pristine MOF coupled with other interesting synergistic features which are sometimes superior to their pristine counterparts. In this regard, the use of porous polymers of intrinsic microporosity (such as PIM-1) has proved to be of interest. However, most of these polymers lack some other important properties such as conductivity, which is of paramount importance in a hydrogen storage system. It is on this basis that our study aimed at direct anchoring of a PIM-1/MOF viscous solution onto a carbon foam (CF) substrate. The effects of PIM-1/UiO-66(Zr) inclusion into CF to the resulting thermal properties (thermal conductivity, thermal diffusivity and volumetric heat capacity) as well as hydrogen uptake capacity was investigated. Contrary to our expectations, the incorporation of PIM-1/UiO-66(Zr) into CF only offered better handling but did not lead to the enhancement of thermal conductivity.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. K. Cousins, R. Zhang, Polymers 11, 690 (2019)

    CAS  PubMed Central  Google Scholar 

  2. U.S. Department of Energy, DOE Technical Targets for On-board Hydrogen Storage for Light-Duty Vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles. Accessed 19 July 2018

  3. K.S. Sing, Pure Appl. Chem. 57, 603 (1985)

    CAS  Google Scholar 

  4. Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst, B. Li, S. Karakalos, A.J. Kropf, E.C. Wegener, J. Sokolowski, M. Chen, Energy Environ. Sci. 12, 250 (2019)

    CAS  Google Scholar 

  5. W. Fan, X. Wang, B. Xu, Y. Wang, D. Liu, M. Zhang, Y. Shang, F. Dai, L. Zhang, D. Sun, J. Mater. Chem. A 6, 24486 (2018)

    CAS  Google Scholar 

  6. M. Mozafari, R. Abedini, A. Rahimpour, J. Mater. Chem. A 6, 12380 (2018)

    CAS  Google Scholar 

  7. H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Science 329, 424 (2010)

    CAS  PubMed  Google Scholar 

  8. O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, Nat. Chem. 2, 944 (2010)

    CAS  PubMed  Google Scholar 

  9. A.G. Klechikov, G. Mercier, P. Merino, S. Blanco, C. Merino, A.V. Talyzin, Microporous Mesoporous Mater. 210, 46 (2015)

    CAS  Google Scholar 

  10. A. Ariharan, B. Viswanathan, V. Nandhakumar, Int. J. Hydrogen Energy 43, 5077 (2018)

    CAS  Google Scholar 

  11. Z. Yang, Y. Xia, R. Mokaya, J. Am. Chem. Soc. 129, 1673 (2007)

    CAS  PubMed  Google Scholar 

  12. Y. Cheng, S. Zhou, P. Hu, G. Zhao, Y. Li, X. Zhang, W. Han, Sci. Rep. 7, 1439 (2017)

    PubMed  PubMed Central  Google Scholar 

  13. N.M. Musyoka, J. Ren, H.W. Langmi, B.C. North, M. Mathe, D. Bessarabov, J. Alloys Compd. 724, 450 (2017)

    CAS  Google Scholar 

  14. S.J. Yang, J.Y. Choi, H.K. Chae, J.H. Cho, K.S. Nahm, C.R. Park, Chem. Mater. 21, 1893 (2009)

    CAS  Google Scholar 

  15. N.M. Musyoka, J. Ren, P. Annamalai, H.W. Langmi, B.C. North, M. Mathe, D. Bessarabov, Res. Chem. Intermed. 42, 5299 (2016)

    CAS  Google Scholar 

  16. L.M. Li, F. Yang, H.F. Wang, X.P. Yan, J. Chromatogr. A 1316, 97 (2013)

    CAS  PubMed  Google Scholar 

  17. L.Y. Molefe, N.M. Musyoka, J. Ren, H.W. Langmi, P.G. Ndungu, R. Dawson, M. Mathe, J. Mater. Sci. 54, 7078 (2019)

    CAS  Google Scholar 

  18. M. Inagaki, J. Qiu, Q. Guo, Carbon 87, 128 (2015)

    CAS  Google Scholar 

  19. N. Xiao, Y. Zhou, Z. Ling, Z. Zhao, J. Qiu, Carbon 60, 514 (2013)

    CAS  Google Scholar 

  20. G.M. Psofogiannakis, T.A. Steriotis, A.B. Bourlinos, E.P. Kouvelos, C. Gch, A.K. Stubos, G.E. Froudakis, NANO 3, 933 (2011)

    CAS  Google Scholar 

  21. C.Y. Zhao, Z.G. Wu, Sol. Energy Mater. Sol. Cells 95, 636 (2011)

    CAS  Google Scholar 

  22. M.L. Pinto, S. Dias, J. Pires, ACS Appl. Mater. Interfaces 5, 2360 (2013)

    CAS  PubMed  Google Scholar 

  23. J. Ren, T. Segakweng, H.W. Langmi, B.C. North, M. Mathe, J. Alloys Compd. 645, 170 (2015)

    Google Scholar 

  24. P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, D. Wang, Adv. Mater. 16, 456 (2004)

    CAS  Google Scholar 

  25. X. Dyosiba, J. Ren, N.M. Musyoka, H.W. Langmi, M. Mathe, M.S. Onyango, SM&T 10, 10 (2016)

    CAS  Google Scholar 

  26. J. Ren, H.W. Langmi, B.C. North, M. Mathe, D. Bessarabov, Int. J. Hydrogen Energy 39, 890 (2014)

    CAS  Google Scholar 

  27. J.F. Blandez, A. Santiago-Portillo, S. Navalón, M. Giménez-Marqués, M. Álvaro, P. Horcajada, H. García, J. Mol. Catal. A 425, 332 (2016)

    CAS  Google Scholar 

  28. H.A. Le, S. Chin, J. Jurng, Powder Technol. 225, 167 (2012)

    CAS  Google Scholar 

  29. S. Hashemian, K. Salari, Z.A. Yazdi, J. Ind. Eng. Chem. 20, 1892 (2014)

    CAS  Google Scholar 

  30. L. Giraldo, J.C. Moreno-Pirajan, Orient. J. Chem. 30, 451 (2014)

    CAS  Google Scholar 

  31. H.A. Zakaria, W.S.W. Mansor, N. Shahrin, Int. J. Sci. Technol. 3, 502 (2017)

    Google Scholar 

  32. P. Hester, S. Xu, W. Liang, N. Al-Janabi, R. Vakili, P. Hill, C.A. Muryn, X. Chen, P.A. Martin, X. Fan, J. Catal. 340, 85 (2016)

    CAS  Google Scholar 

  33. Q. Yang, H.Y. Zhang, L. Wang, Y. Zhang, J. Zhao, ACS Omega 3, 4199 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Z. Li, K. Wang, J. Song, Q. Xu, N. Kobayashi, J. Mater. Cycl. Waste 16, 359 (2014)

    CAS  Google Scholar 

  35. B. Panella, M. Hischer, S. Roth, Carbon 43, 2209 (2005)

    Google Scholar 

  36. J. Ren, N.M. Musyoka, H.W. Langmi, B.C. North, M. Mathe, X. Kang, Int. J. Hydrogen Energy 39, 14912 (2014)

    CAS  Google Scholar 

  37. Y. Sun, L. Wang, W.A. Amer, H. Yu, J. Ji, L. Huang, J. Shan, R. Tong, J. Inorg. Organomet. Polym. Mater. 23, 270–285 (2013)

    CAS  Google Scholar 

  38. J. Huang, X. Xia, X. Hu, S. Li, K. Liu, Int. J. Heat Mass Transf. 138, 11 (2019)

    CAS  Google Scholar 

  39. S.T. Meek, J.A. Greathouse, M.D. Allendorf, Adv. Mater. 23, 249 (2011)

    CAS  PubMed  Google Scholar 

  40. J.J. Purewal, D. Liu, J. Yang, A. Sudik, D.J. Siegel, S. Maurer, U. Müller, Int. J. Hydrogen Energy 37, 2723 (2012)

    CAS  Google Scholar 

  41. R. Narasimman, S. Vijayan, K. Prabhakaran, J. Mater. Res. 30, 46 (2015)

    CAS  Google Scholar 

  42. M.F. Ashby, Philos. Trans. R. Soc. A 364, 15 (2005)

    Google Scholar 

  43. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1873)

    Google Scholar 

  44. Z. Hashin, S. Shtrikman, J. Appl. Phys. 33, 3125 (1962)

    CAS  Google Scholar 

  45. Z. Neisi, Z. Ansari-Asl, A.S. Dezfuli, J. Inorg. Organomet. Polym. Mater. 29, 1838–1847 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Department of Science and Innovation (DSI) of South Africa towards HySA Infrastructure (Grant No. CNMH01X), National Research Foundation (NRF) for SA/France collaboration funding (Grant No. CNMH20X) and the Royal Society—DFID Africa Capacity Building Initiative Programme Grant (Grant No. AQ150029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas M. Musyoka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molefe, L.Y., Musyoka, N.M., Ren, J. et al. Effect of Inclusion of MOF-Polymer Composite onto a Carbon Foam Material for Hydrogen Storage Application. J Inorg Organomet Polym 31, 80–88 (2021). https://doi.org/10.1007/s10904-020-01701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01701-8

Keywords

  • Carbon foam
  • Hydrogen storage
  • Metal organic frameworks
  • Polymers of intrinsic microporosity