Skip to main content
Log in

Auto-combustion Synthesis and Characterization of Iron Oxide Nanoparticles (α-Fe2O3) for Removal of Lead Ions from Aqueous Solution

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, iron oxide nanoparticles (hematite; α-Fe2O3) were fabricated by using an auto-combustion technique with fuels: hexamine, urea and a mixture of them with the molar ratio as the following: (Fe:H:U = 1:2.5:0, 1:0:0.42 and 1:1.25:0.21) according to the rule of the combustion method. The as-fabricated iron oxide nanoparticles calcined at 500 °C for 30 min. the obtained iron oxide nanoparticles were characterized by using various tools such as X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The results of XRD confirmed that the formation of the rhombohedral crystal structure of the synthesized iron oxide in the form of hematite (α-Fe2O3) after calcination. The extracted data from XRD and TEM techniques showed that the average particles and crystallite sizes of the fabricated hematite nanoparticles (FHU5 sample) was estimated to be about 35.43 nm and 36 nm, respectively. According to the FTIR spectra of the calcined FU5, FH5 and FHU5 samples, the bands at 439 cm−1 and 545 cm−1 are related to the vibration modes of Fe-O inside Fe2O3 lattice. The adsorption capacity of the calcined iron oxide nano-adsorbent (α-Fe2O3; FH5 sample) was examined at different parameters for the removal Pb2+ from aqueous media and the optimum conditions were determined. The extracted data showed that the removal of lead ions increased with the rise of pH value (4–6). The optimum conditions were found: pH 5.5, 120 min and 50 mg of the fabricated α-Fe2O3 at 25 °C. The models of adsorption isotherm and adsorption kinetics are used for the description of the removal leads ions over the calcined α-Fe2O3 nanoparticles. The thermodynamics factors are investigated for the removal of the lead ions over the fabricated hematite nanoparticles (α-Fe2O3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. El-Nahas, A.I. Osman, A.S. Arafat, H. Ala’a, H.M. Salman, J. Water Process Eng. 33, 101104 (2020)

    Google Scholar 

  2. S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Bandegharaei, V.K. Thakur, J. Cleaner Prod. 228, 755 (2019)

    CAS  Google Scholar 

  3. N. Yahya, F. Aziz, N. Jamaludin, M. Mutalib, A. Ismail, W. Salleh, J. Jaafar, N. Yusof, N.A. Ludin, J. Environ. Chem. Eng. 6, 7411 (2018)

    CAS  Google Scholar 

  4. M.A.P. Kelm, M.J. da Silva Júnior, S.H. de Barros Holanda, C.M.B. de Araujo, R.B. de Assis Filho, E.J. Freitas, D.R. dos Santos, M.A. da Motta Sobrinho, Environ. Sci. Pollut. Res. 26, 28558–28573 (2019)

    CAS  Google Scholar 

  5. D.H.K. Reddy, Y.-S. Yun, Coord Chem. Rev. 315, 90 (2016)

    CAS  Google Scholar 

  6. A.L. Wani, A. Ara, J.A. Usmani, Interdiscip. Toxicol. 8, 55 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. W. Fu, W. Zhang, J. Membr. Sci. 568, 97 (2018)

    CAS  Google Scholar 

  8. L. Deng, H.-H. Ngo, W. Guo, H. Zhang, Water Res. 157, 155 (2019)

    CAS  PubMed  Google Scholar 

  9. C.V. Subban, A.J. Gadgil, Desalination 465, 38 (2019)

    CAS  Google Scholar 

  10. I. Levchuk, J.J. Rueda Márquez, M. Sillanpää, Chemosphere 192, 90 (2018)

    CAS  PubMed  Google Scholar 

  11. H. Wei, B. Gao, J. Ren, A. Li, H. Yang, Water Res. 143, 608 (2018)

    CAS  PubMed  Google Scholar 

  12. K.-W. Kim, W.-J. Shon, M.-K. Oh, D. Yang, R.I. Foster, K.-Y. Lee, Nucl. Eng. Technol. 51, 738 (2019)

    CAS  Google Scholar 

  13. V. Yargeau, in Metropolitan Sustainability. ed. by F. Zeman (Woodhead Publishing, Sawston, 2012)

    Google Scholar 

  14. R. Ilmetov, Mater. Today Proc. 6, 11 (2019)

    CAS  Google Scholar 

  15. S. Apte, S. Naik, R. Sonawane, B. Kale, J. Baeg, J. Am. Ceram. Soc. 90, 412 (2007)

    CAS  Google Scholar 

  16. K. Omri, N. Alonizan, J. Inorg. Organomet. Polym. Mater. 29, 203 (2019)

    CAS  Google Scholar 

  17. Z.-H. Huang, X. Zheng, W. Lv, M. Wang, Q.-H. Yang, F. Kang, Langmuir 27, 7558 (2011)

    CAS  PubMed  Google Scholar 

  18. M. Kraus, U. Trommler, F. Holzer, F.-D. Kopinke, U. Roland, Chem. Eng. J. 351, 356 (2018)

    CAS  Google Scholar 

  19. S.S. Fiyadh, M.A. AlSaadi, M.K. AlOmar, S.S. Fayaed, A. El-Shafie, Desalin. Water Treat. 150, 105 (2019)

    CAS  Google Scholar 

  20. C. Shen, Y. Zhao, W. Li, Y. Yang, R. Liu, D. Morgen, Chem. Eng. J. 372, 1019 (2019)

    CAS  Google Scholar 

  21. K. Deshpande, A. Mukasyan, A. Varma, Chem. Mater. 16, 4896 (2004)

    CAS  Google Scholar 

  22. H. Cui, Y. Liu, W. Ren, Adv. Powder Technol. 24, 93 (2013)

    CAS  Google Scholar 

  23. S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10, 911 (2011)

    CAS  PubMed  Google Scholar 

  24. K. Sivula, F. Le Formal, M. Grätzel, ChemSusChem 4, 432 (2011)

    CAS  PubMed  Google Scholar 

  25. X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, ACS Nano 5, 3333 (2011)

    CAS  PubMed  Google Scholar 

  26. G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H. Matralis, Catal. Today 75, 157 (2002)

    CAS  Google Scholar 

  27. Y. Zheng, Y. Cheng, Y. Wang, F. Bao, L. Zhou, X. Wei, Y. Zhang, Q. Zheng, J. Phys. Chem. B 110, 3093 (2006)

    CAS  PubMed  Google Scholar 

  28. H. Fan, G. You, Y. Li, Z. Zheng, H. Tan, Z. Shen, S. Tang, Y. Feng, J. Phys. Chem. C 113, 9928 (2009)

    CAS  Google Scholar 

  29. N. Pailhé, A. Wattiaux, M. Gaudon, A. Demourgues, J. Solid State Chem. 181, 2697 (2008)

    Google Scholar 

  30. J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater. 17, 582 (2005)

    CAS  Google Scholar 

  31. X. Xu, R. Cao, S. Jeong, J. Cho, Nano Lett. 12, 4988 (2012)

    CAS  PubMed  Google Scholar 

  32. S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, W. Zhou, J. Phys. Chem. C 111, 10217 (2007)

    CAS  Google Scholar 

  33. L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wan, Adv. Mater. 18, 2426 (2006)

    CAS  Google Scholar 

  34. F. Bødker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Mørup, Phys. Rev. B 61, 6826 (2000)

    Google Scholar 

  35. H.G. Cha, S.J. Kim, K.J. Lee, M.H. Jung, Y.S. Kang, J. Phys. Chem. C 115, 19129 (2011)

    CAS  Google Scholar 

  36. L. Li, Y. Yu, F. Meng, Y. Tan, R.J. Hamers, S. Jin, Nano Lett. 12, 724 (2012)

    CAS  PubMed  Google Scholar 

  37. S. Boumaza, H. Kabir, I. Gharbi, A. Belhadi, M. Trari, Int. J. Hydrogen Energ. 43, 3424 (2018)

    CAS  Google Scholar 

  38. K. Omri, F. Alharbi, Appl. Phys. A 125, 696 (2019)

    Google Scholar 

  39. K. Omri, R. Lahouli, J. Mater. Sci. Mater. Electron. 30, 7834 (2019)

    CAS  Google Scholar 

  40. D.E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T.D. Mekuria, A.H. Shah, Results Phys. 12, 1253 (2019)

    Google Scholar 

  41. A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Mol. Struct. 1141, 99 (2017)

    CAS  Google Scholar 

  42. D.E. Fouad, C. Zhang, T.D. Mekuria, C. Bi, A.A. Zaidi, A.H. Shah, Ultrason. Sonochem. 59, 104713 (2019)

    CAS  PubMed  Google Scholar 

  43. K. Ramachandran, M. Geerthana, P. Maadeswaran, B. Liang, R. Ramesh, Optik 212, 164658 (2020)

    CAS  Google Scholar 

  44. M. Huang, M. Qin, P. Chen, B. Jia, Z. Chen, R. Li, Z. Liu, X. Qu, Ceram. Int. 42, 10380 (2016)

    CAS  Google Scholar 

  45. Q.Q. Xiong, S.J. Shi, H. Tang, X.L. Wang, C.D. Gu, J.P. Tu, Mater. Res. Bull. 61, 83 (2015)

    CAS  Google Scholar 

  46. R. Al-Gaashani, S. Radiman, N. Tabet, A.R. Daud, J. Alloys Compd. 550, 395 (2013)

    CAS  Google Scholar 

  47. M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, M. Panjan, J. Alloys Compd. 792, 599 (2019)

    CAS  Google Scholar 

  48. M. Gabal, F. Al-Solami, Y. Al Angari, A. Awad, A. Al-Juaid, A. Saeed, J. Mater. Sci. Mater. Electron. 31, 3146 (2020)

    CAS  Google Scholar 

  49. M. Gabal, F. Al-Solami, Y. Al Angari, A. Ali, A. Al-Juaid, M. Alsabban, K.W. Huang, Ceram. Int. 45, 16530 (2019)

    CAS  Google Scholar 

  50. I.S. Ahmed, S.A. Shama, H.A. Dessouki, A.A. Ali, Spectrochim. Acta Part A 81, 324 (2011)

    CAS  Google Scholar 

  51. A.A. Ali, I.S. Ahmed, Mater. Chem. Phys. 238, 121888 (2019)

    CAS  Google Scholar 

  52. A.A. Ali, E.El Fadaly, I.S. Ahmed, Dyes Pigm. 158, 451 (2018)

    CAS  Google Scholar 

  53. A. Mukasyan, P. Dinka, Self-Propag. High-Temp Synth. 16, 23 (2007)

    CAS  Google Scholar 

  54. P. Erri, P. Pranda, A. Varma, Ind. Eng. Chem. Res. 43, 3092 (2004)

    CAS  Google Scholar 

  55. P. Scherrer, Phys 2, 98 (1918)

    Google Scholar 

  56. I.T. Kim, G.A. Nunnery, K. Jacob, J. Schwartz, X. Liu, R. Tannenbaum, J. Phys. Chem. C 114, 6944 (2010)

    CAS  Google Scholar 

  57. E. Darezereshki, Mater. Lett. 65, 642 (2011)

    CAS  Google Scholar 

  58. A.A. Ismail, A.M. Ali, F.A. Harraz, M. Faisal, H. Shoukry, A. Al-Salami, Int. J. Electrochem. Sci. 14, 15 (2019)

    CAS  Google Scholar 

  59. A. Manikandan, J.J. Vijaya, L.J. Kennedy, J. Nanosci. Nanotechnol. 13, 2986 (2013)

    CAS  PubMed  Google Scholar 

  60. A.A. Ali, E.M. Elfiky, I.S. Ahmed, A.A. Khalil, T.Y. Mohamed, Desalin. Water Treat. 193, 83 (2020)

    CAS  Google Scholar 

  61. A. Sharif, M. Khorasani, F. Shemirani, J. Inorg. Organomet. Polym Mater. 28, 2375 (2018)

    CAS  Google Scholar 

  62. M. Mahdavi, M.B. Ahmad, M.J. Haron, Y. Gharayebi, K. Shameli, B. Nadi, J. Inorg. Organomet. Polym Mater. 23, 599 (2013)

    CAS  Google Scholar 

  63. K. Zargoosh, H. Abedini, A. Abdolmaleki, M.R. Molavian, Ind. Eng. Chem. Res. 52, 14944 (2013)

    CAS  Google Scholar 

  64. R. Balasubramanian, S. Perumal, K. Vijayaraghavan, Ind. Eng. Chem. Res. 48, 2093 (2009)

    CAS  Google Scholar 

  65. S.A. Chaudhry, T.A. Khan, I. Ali, Egypt. J. Basic Appl. Sci. 3, 287 (2016)

    Google Scholar 

  66. Y. Yang, Y. Xie, L. Pang, M. Li, X. Song, J. Wen, H. Zhao, Langmuir 29, 10727 (2013)

    CAS  PubMed  Google Scholar 

  67. E.A. Abdelrahman, A. Alharbi, A. Subaihi, A.M. Hameed, M.A. Almutairi, F.K. Algethami, H.M. Youssef, J. Mater. Res. Technol. 9, 7900 (2020)

    CAS  Google Scholar 

  68. M. Ghaedi, H.Z. Khafri, A. Asfaram, A. Goudarzi, Spectrochim. Acta Part A 152, 233 (2016)

    CAS  Google Scholar 

  69. T.A. Khan, S.A. Chaudhry, I. Ali, Environ. Sci. Pollut. Res. 20, 5425 (2013)

    CAS  Google Scholar 

  70. A. Dada, A. Olalekan, A. Olatunya, O. Dada, IOSR J. Appl. Chem. 3, 38 (2012)

    Google Scholar 

  71. M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati, M. Purkait, Spectrochim. Acta Part A 135, 479 (2015)

    CAS  Google Scholar 

  72. W.W. Ngah, S. Fatinathan, J. Environ. Sci. 22, 338 (2010)

    CAS  Google Scholar 

  73. V. Venkatesham, G. Madhu, S. Satyanarayana, H. Preetham, Procedia Eng. 51, 308 (2013)

    CAS  Google Scholar 

  74. M. Fan, T. Boonfueng, Y. Xu, L. Axe, T.A. Tyson, J. Colloid Interface Sci. 281, 39 (2005)

    CAS  PubMed  Google Scholar 

  75. N.N. Nassar, J. Hazard Mater. 184, 538 (2010)

    CAS  PubMed  Google Scholar 

  76. H. Cao, J. Chen, J. Zhang, H. Zhang, L. Qiao, Y. Men, J. Environ. Sci. 22, 1792 (2010)

    CAS  Google Scholar 

  77. Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey, P.R. Solanki, Sci. Rep. 7, 1 (2017)

    CAS  Google Scholar 

  78. B. Tsedenbal, I. Hussain, J.E. Lee, B.H. Koo, J. Sci. Adv. Mater. 12, 422 (2020)

    CAS  Google Scholar 

  79. M. Rehman, W. Rehman, M. Waseem, S. Hussain, S. Haq, M.A.-U. Rehman, Environ. Sci. Pollut. Res. 26, 19968 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to Benha University and Academy of Scientific Research & Technology, Egypt for support of the current research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.A., Ahmed, I.S. & Elfiky, E.M. Auto-combustion Synthesis and Characterization of Iron Oxide Nanoparticles (α-Fe2O3) for Removal of Lead Ions from Aqueous Solution. J Inorg Organomet Polym 31, 384–396 (2021). https://doi.org/10.1007/s10904-020-01695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01695-3

Keywords

Navigation