Skip to main content
Log in

Facile, Low-Cost and Rapid Phytosynthesis of Stable and Eco-friendly Silver Nanoparticles Using Boerhavia elegans (Choisy) and Study of Their Antimicrobial Activities

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In recent years, the application of bioengineering methods has attracted special focus because of simplicity, low cost, high efficiency, non-toxicity, and environmental compatibility. The present study is the first report of biosynthesis of silver nanoparticles (SNPs) using Boerhavia elegans (choisy). 2 mL of extract was added to 4 mL of AgNO3 with concentration of 1 mM. In order to obtain nanoparticles (NPs) with uniform shape and size, factors affecting the synthesis of NPs, such as: pH of reaction, volume of extract, concentration of silver (I), temperature and time of reaction were evaluated and optimized using UV–Vis spectrophotometry. To characterize the NPs, Transmission Electron Microscopy (TEM) and Power X-ray Diffraction (PXRD) and Fourier-Transformed Infrared Spectroscopy techniques were used. Finally, the antimicrobial activities of SNPs were investigated on four and two pathogenic bacteria and fungi using disc diffusion method. The SNPs showed Surface Plasmon Resonance centered at 405 nm. The PXRD pattern and TEM analysis revealed spherical, stable, and uniform SNPs with the average particle size of 15 nm. The antimicrobial activity of the synthesized SNPs showed a significant microbial effect on all clinical isolates especially, bacteria and fungi. These results suggest that such stable and uniform SNPs can be synthesized rapidly and simply for clinical as well as pharmaceutical applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Yang, Z. Yang, R. Wang, Z. Feng, Silver nanoparticle deposited layered double hydroxide nanosheets as a novel and high-performing anode material for enhanced Ni–Zn secondary batteries. J. Mater. Chem. A. 2, 785–791 (2014)

    CAS  Google Scholar 

  2. P. Verma, S. Kumar Maheshwari, Application of silver nanoparticles in divers sectors. Int. J. Nano Dimens. 10, 18–36 (2019)

    CAS  Google Scholar 

  3. S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, K. Srinivasan, Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 594–598 (2011)

    CAS  PubMed  Google Scholar 

  4. C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12(5), 1531–1551 (2010)

    CAS  Google Scholar 

  5. TCh. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basic of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7, 1–17 (2016)

    Google Scholar 

  6. M. Valodkar, Sh. Modi, A. Pal, S. Thakore, Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater. Res. Bull. 46(3), 384–389 (2011)

    CAS  Google Scholar 

  7. A. Ziarati, J. Safaei-Ghomi, S. Rohani, Sonochemically synthesis of pyrazolones using reusable catalyst CuI nanoparticles that was prepared by sonication. Ultrason. Sonochem. 20, 1069–1075 (2013)

    CAS  PubMed  Google Scholar 

  8. H.T. Zhu, C.Y. Zhang, YSh. Yin, Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J. Cryst. Growth. 270(3–4), 722–728 (2004)

    CAS  Google Scholar 

  9. I. Lee, S.W. Han, K. Kim, Simultaneous preparation of SERS-active metal colloids and plates by laser ablation. J. Raman Spectrosc. 32, 947–952 (2001)

    CAS  Google Scholar 

  10. K.A. Bogle, S.D. Dhole, V.N. Bhoraskar, Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology 17, 3204–3225 (2006)

    CAS  Google Scholar 

  11. S. Supraja, S. Mohammad Ali, N. Chakaravarthy, J. Priya, A. Sagadevan, E. Kasinathan, M.K. Sindhu, S. Arumugan, Green synthesis of silver nanoparticles from Cynodon Dactylon leaf extract. Int. J. Chem. Tech. Res. 5(1), 271–277 (2013)

    CAS  Google Scholar 

  12. N.D. Jasuja, D.K. Gupta, M. Reza, S.C. Joshi, Green synthesis of AgNPs stabilized with biowaste and their antimicrobial activitie. Braz. J. Microbiol. 45(4), 1325–1332 (2014)

    CAS  PubMed  Google Scholar 

  13. H. Soliman, A. Elsayed, A. Dyaa, Antimicrobial activity of silver nanoparticles biosynthesized by Rhodotorula sp. strain ATL72. Egypt. J. Basic Appl. Sci. 5, 228–233 (2018)

    Google Scholar 

  14. Y.Y. Loo, Y. Rukayadi, M.-A.-R. Nor-Khaizura, C.H. Kuan, B.W. Chieng, M. Nishibuchi, S. Radu, In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol. 9, 1555 (2018). https://doi.org/10.3389/fmicb.2018.01555

    Article  PubMed  PubMed Central  Google Scholar 

  15. M. Zarei, A. Jamnejad, E. Khajehali, Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J. Microbiol. 7, 1–11 (2014)

    Google Scholar 

  16. S.S. Sana, V.R. Badineni, S.K. Arla, V.K.N. Boya, Eco-friendly synthesis of silver nanoparticles using leaf extract of Grewia flaviscences and study of their antimicrobial activity. Mater. Lett. 145, 347–350 (2015)

    CAS  Google Scholar 

  17. D.S. Kannan, Sh. Mahboob, Kh.A. Al-Ghanim, P. Venkatachalam, Antibacterial, antibiofilm and photocatalytic activities of biogenic silver nanoparticles from Ludwigia octovalvis. J. Cluster Sci. (2020). https://doi.org/10.1007/s10876-020-01784-w

    Article  Google Scholar 

  18. J.L. Gardea-Torresdey, J.G. Parsons, K. Dokken, J. Peralta-Videa, H.E. Troiani, P. Santiago, M. Jose-Yacaman, Alfalfa sprouts: a natural source for the synthesis of silver nanoparticlels. Langmuir 19, 1357–1361 (2003)

    CAS  Google Scholar 

  19. K. Okaiyeto, H. Hoppe, A.L. Okoh, Plant-based synthesis of silver nanoparticles using aqueous leaf extract of salvia officinalis: characterization and its antiplasmodial activity. J. Cluster Sci. (2020). https://doi.org/10.1007/s10876-020-01766-y

    Article  Google Scholar 

  20. A.D. Dwivedi, K. Gopal, Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A 369, 27–33 (2010)

    CAS  Google Scholar 

  21. D.S.H. Prabha, M. Lahtinen, M. Sillanpaa, Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 45, 1065–1071 (2010)

    Google Scholar 

  22. K. Vijayaraghavana, A. Mahadevana, M. Sathishkumara, S. Pavagadhia, R. Balasubramaniana, Biosynthesis of Au(0) from Au(III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chem. Eng. J. 167, 223–227 (2011)

    Google Scholar 

  23. M.R. Behravan, A. Hossein Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, A. Mirzapour, Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterialactivity. Biomac (2018). https://doi.org/10.1016/j.ijbiomac.2018.11.101

    Article  Google Scholar 

  24. S. Pirtarighat, M. Ghannadnia, S. Baghshahi, Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem. 9, 1–9 (2019). https://doi.org/10.1007/s40097-018-0291-4

    Article  CAS  Google Scholar 

  25. A.R. Allafchian, S.Z. Mirahmadi-Zare, S.A.H. Jalali, S.S. Hashemi, M.R. Vahabi, Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J. Nanostruct. Chem. 6, 129–135 (2016)

    CAS  Google Scholar 

  26. A. Abdelmoteleb, B. Valdez-Salas, M. Carrillo-Beltran, D.D. Hernandez, D. Gonza´lez-Mendoza, Green synthesis of silver nanoparticles using Pluchea sericea a native plants from Baja California, Mexico and their potential application as antimicrobials. Iran. J. Sci. Technol. Trans. A Sci. 42, 457–463 (2018)

    Google Scholar 

  27. V. Abdi, I. Sourinejad, M. Yousefzadi, Z. Ghasemi, Biosynthesis of silver nanoparticles from the mangrove Rhizophora mucronata: its characterization and antibacterial potential. Iran. J. Sci. Technol. Trans. Sci. (2019). https://doi.org/10.1007/s40995-019-00739-9

    Article  Google Scholar 

  28. Sh.H. Chen, M.J. Wu, A taxonomical study of the genus Boerhavia (Nyctaginaceae) in Taiwan. Taiwania 52(4), 332–342 (2007)

    Google Scholar 

  29. A. Ramazani, S. Zakeri, S. Sardari, N. Khodakarim, N.D. Djadidt, In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense. Malaria J. 9, 124 (2010)

    Google Scholar 

  30. A.R. Mahesh, H. Kumar, M.K. Ranganath, R.A. Devkar, Detail study on Boerhavia Diffusa plant for its medicinal importance—a review. Res. J. Pharm. Sci. 1(1), 28–36 (2012)

    Google Scholar 

  31. Z. Sadeghi, K. Kuhestani, V. Abdollahi, A. Mahmood, Ethnopharmacological studies of indigenous medicinal plants of Saravan region, Baluchistan, Iran. J. Ethnopharmacol. 153, 111–118 (2014)

    PubMed  Google Scholar 

  32. Z. Sadeghi, J. Valizadeh, O. Azizian Shermeh, M. Akaberi, Antioxidant activity and total phenolic content of Boerhavia elegans (choisy) grown in Baluchistan, Iran. Avicenna J. Phytomed. 5(1), 1–9 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. O. Azizian Shermeh, A. Einali, A. Ghasemi, Rapid biologically one-step synthesis of stable bioactive silver nanoparticles using Osage orange (Maclura pomifera) leaf extract and their antimicrobial activities. Adv. Powder Technol. 28, 3164–3171 (2017)

    CAS  Google Scholar 

  34. O. Azizian Shermeh, M. Valizadeh, M. Taherizadeh, M. Beigomi, Phytochemical investigation and phytosynthesis of eco-friendly stable bioactive gold and silver nanoparticles using petal extract of saffron and study of their antimicrobial activities. Appl. Nanosci. (2019). https://doi.org/10.1007/s13204-019-01059-5

    Article  Google Scholar 

  35. V. Gopinath, S. Priyadarshini, M. Fai Loke, J. Arunkumar, E. Marsili, E. MubarakAli, P. Velusamy, J. Vadivelu, Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab. J. Chem. 10, 1107–1117 (2017)

    CAS  Google Scholar 

  36. Sh.P. Dubeya, M. Lahtinen, M. Sillanpaaa, Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 45, 1065–1071 (2010)

    Google Scholar 

  37. M. Saravanana, S.K. Barik, D. MubarakAli, P. Prakash, A. Pugazhendhi, Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog. 118, 221–226 (2016)

    Google Scholar 

  38. K. Saravanakumar, R. Chelliah, D. MubarakAli, D. Oh, K. Kathiresan, M.H. Wang, Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci. Rep. 9, 1–8 (2019)

    CAS  Google Scholar 

  39. A. Tahira, M. Vabeiryureilai, S.K. Nachimuthu, D. MubarakAli, S. Hemalatha, Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Environ. Sci. Pollut. Res. Int. 26(13), 13649–13657 (2019)

    Google Scholar 

  40. S.P. Deshmukh, S.M. Patil, S.B. Mullani, S.D. Delekar, Silver nanoparticles as an effective disinfectant: a review. Mater. Sci. Eng. C. 97, 954–965 (2018)

    Google Scholar 

  41. I. Zorraquín-Peña, C. Cueva, B. Bartolomé, M.V. Moreno-Arribas, Silver nanoparticles against foodborne bacteria. Effects at intestinal level and health limitations. Microorganisms 8, 1–25 (2020)

    Google Scholar 

  42. L. Castro, M.L. Blázquez, J.A. Muñoz, F. Gonzalez, C. Garcia-Balboa, A. Ballester, Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem. 46(5), 1076–1082 (2011)

    CAS  Google Scholar 

  43. D.S. Shenya, J. Mathewa, D. Philip, Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79, 254–262 (2011)

    Google Scholar 

  44. D. Philip, Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Phys. E. 42, 1417–1424 (2010)

    CAS  Google Scholar 

  45. P. Velmurigan, K. Anbalagan, M. Manosathyadevan, K.-J. Lee, M. Cho, S.-M. Lee, J.-H. Park, S.-G. Oh, K.-S. Bang, B.-T. Oh, Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antimicrobial activities of silver nanoparticles against food pathogens. Bioprocess Biosyst. Eng. 37(10), 1935–1943 (2014)

    Google Scholar 

  46. Z. Yu, W. Wang, F. Kong, M. Lin, A. Mustapha, Cellulose nanofibril/silver nanoparticle composite as an active food packaging system and its toxicity to human colon cells. Int. J. Biol. Macromol. 129, 887–894 (2019)

    CAS  PubMed  Google Scholar 

  47. M.A. Hassaan, Sh. Hosny, Green synthesis of Ag and Au nanoparticles from micro and macro algae—review. Int. J. Atmospheric Oceanic Sci. 2(1), 10–22 (2018)

    Google Scholar 

  48. M. Soltaninejad, M. Khatami, G.H. Shahidi, Bonjar, Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus. IET Nanobiotechnol. 10(1), 33–38 (2016)

    Google Scholar 

  49. S. Mathew, S. Snigdha, J. Mathew, E.K. Radhakrishnan, Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag. Shelf Life 19, 155–166 (2019)

    Google Scholar 

  50. Y.Y. Ren, H. Yang, T. Wang, C. Wang, Bio-synthesis of silver nanoparticles with antibacterial activity. Mater. Chem. Phys. 235, 121746 (2019)

    CAS  Google Scholar 

  51. K. Praveen Kumar, W. Paul, C.H.P. Sharma, Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem. 46, 2007–2013 (2011)

    Google Scholar 

  52. S.M. Navarro Gallón, E. Alpaslan, M. Wang, P. Larese-Casanova, M.E. Londoño, L. Atehortúa, J.J. Pavón, T.J. Webster, Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides. Mater. Sci. Eng. C. 99, 685–695 (2019)

    Google Scholar 

  53. D. Westmeier, A. Hahlbrock, C. Reinhardt, J. Frohlich-Nowoisky, S. Wessler, C. Vallet, U. Poschl, S.K. Knauere, R.H. Stauber, Nanomaterial–microbe cross-talk: physicochemical principles and (patho) biological consequences. Chem. Soc. Rev. 47, 5312–5337 (2018)

    CAS  PubMed  Google Scholar 

  54. H.H. Lara, N.V. Ayala-Núnez, I. Turrent, L.C.R. Padilla, Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26(4), 615–621 (2010)

    CAS  Google Scholar 

  55. M. Oves, M. Aslam, M.A. Rauf, S. Qayyum, H.A. Qari, M.S. Khan, M.Z. Alam, S. Tabrez, A. Pugazhendhi, I.M. Ismail, Antimicrobial and anticancer activities of silver nanoparti-cles synthesized from the root hair extract of Phoenix dactylifera. Mater. Sci. Eng. C. 89, 429–443 (2018)

    CAS  Google Scholar 

  56. B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Biogenic nano-scale sil-ver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim. Acta Part A. 121, 164–172 (2014)

    CAS  Google Scholar 

  57. M.G. Gordienko, V.V. Palchikova, S.V. Kalenov, A.A. Belov, V.N. Lyasnikova, D.Y. Poberezhniy, A.V. Chibisova, V.V. Sorokin, D.A. Skladnev, Antimicrobial activity of silver salt and silver nanoparticles in different forms against microorganisms of different taxonomic groups. J. Hazard. Mater. 378, 120754 (2019)

    CAS  PubMed  Google Scholar 

  58. J. Du, Z. Hu, Z. Yu, H. Li, J. Pan, D. Zhao, Y. Bai, Antibacterial activity of a novel Forsythia suspensa fruit mediated green silver nanoparticles against food-borne pathogens and mechanisms investigation. Mater. Sci. Eng. C. 102, 247–253 (2019)

    CAS  Google Scholar 

  59. M. Chandhru, R. Logesh, S.K. Rani, N. Ahmed, N. Vasimalai, One-pot green route synthesis of silver nanoparticles from jack fruit seeds and their antibacterial activities with Escherichia coli and salmonella bacteria. Biocatal. Agric. Biotechnol. 20, 101241 (2019)

    Google Scholar 

  60. A. Samiee Zafarghandi, H.R. Ahmadi Ashtiani, S.M. Rezayat, N. Soleimani, S.R. Hosseinidoost, S. Heydarzadeh Khoyi, Evaluation of reciprocal pharmaceutical effects and antibacterial activity of silver nanoparticles and methanolic extract of Crocus sativus L. (Saffron) on some bacterial strains. Int. J. Enteric. Pathog. 5, 18–23 (2017)

    Google Scholar 

  61. S. Lokina, A. Stephen, V. Kaviyarasan, C. Arulvasu, V. Narayanan, Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur. J. Med. Chem. 76, 256–263 (2014)

    CAS  PubMed  Google Scholar 

  62. Z. Wu, X. Huang, Y.C. Li, H. Xiao, X. Wang, Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydr. Polym. 199, 210–218 (2018)

    CAS  PubMed  Google Scholar 

  63. Z. Zarei, D. Razmjoue, J. Karimi, Green synthesis of silver nanoparticles from Caralluma tuberculata extract and its antibacterial activity. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01586-7

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful for Zabol University of Medical Sciences for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Azizian-Shermeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizian-Shermeh, O., Jalali-Nezhad, A.A., Taherizadeh, M. et al. Facile, Low-Cost and Rapid Phytosynthesis of Stable and Eco-friendly Silver Nanoparticles Using Boerhavia elegans (Choisy) and Study of Their Antimicrobial Activities. J Inorg Organomet Polym 31, 279–291 (2021). https://doi.org/10.1007/s10904-020-01691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01691-7

Keywords

Navigation