Skip to main content
Log in

Synthesis of Flower-Like Co9S8/Reduced Graphene Oxide Nanocomposites and Their Photocatalytic Performance

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The novel flower-like Co9S8/reduced graphene oxide (rGO) microsphere nanocomposites were synthesized using wet chemical method in combination with a spray drying technique. The structures and morphologies of as-synthesized Co9S8/rGO nanocomposites were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). The results reveal that Co9S8 is homogeneously dispersed on the surface of rGO microspheres. The significantly enhanced photocatalytic activity of Co9S8/rGO nanocomposites in comparison with a pure Co9S8 was investigated by the degradation of methylene blue (MB) using ultraviolet (UV) spectroscopy. The photodegradation ratios of MB using flower-like Co9S8/rGO nanocomposites with a Co9S8 mass ratio of 67.3, 35.3 and 55.6 wt% are about 86.7, 92.0, and 98.7%, respectively, after irradiation for 80 min. By comparing the nanocomposites and pure flower-like Co9S8, the pure Co9S8 showed less photocatalytic activity upon the degradation of MB than the nanocomposites. It can be attributed to the improved electron–hole pair separation and enhanced adsorption due to the presence of rGO microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 133(1–3), 226–232 (2006)

    CAS  PubMed  Google Scholar 

  2. E.V. Hess, Environmental chemicals and autoimmune disease: cause and effect. Toxicology 181, 65–70 (2002)

    PubMed  Google Scholar 

  3. J.-H. Sun, S.-Y. Dong, Y.-K. Wang, S.-P. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. J. Hazard. Mater. 172(2–3), 1520–1526 (2009)

    CAS  PubMed  Google Scholar 

  4. N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, D. Wang, Photocatalytic properties of graphdiyne and graphene modified TiO2: from theory to experiment. ACS Nano 7(2), 1504–1512 (2013)

    CAS  PubMed  Google Scholar 

  5. C. An, S. Peng, Y. Sun, Facile synthesis of sunlight-driven AgCl: Ag plasmonic nanophotocatalyst. Adv. Mater. 22(23), 2570–2574 (2010)

    CAS  PubMed  Google Scholar 

  6. X. Bai, L. Wang, Y. Zhu, Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization. ACS Catal. 2(12), 2769–2778 (2012)

    CAS  Google Scholar 

  7. S. Jiang, K. Ithisuphalap, X. Zeng, G. Wu, H. Yang, 3D porous cellular NiCoO2/graphene network as a durable bifunctional electrocatalyst for oxygen evolution and reduction reactions. J. Power Sources 399, 66–75 (2018)

    CAS  Google Scholar 

  8. Study I. S.; Pu Z.; Liu X.; Owusu K. A.; Monestel H. G. R.; Boakye F. O.; Zhang H.; Mu S., Multifunctional Mo-N/C@ MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv. Func. Mater. 27(44), 1702300 (2017)

    Google Scholar 

  9. Y.F. Xu, M.R. Gao, Y.R. Zheng, J. Jiang, S.H. Yu, Nickel/nickel (II) oxide nanoparticles anchored onto cobalt (IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem. Int. Ed. 52(33), 8546–8550 (2013)

    CAS  Google Scholar 

  10. J. Lin, H. Wang, X. Zheng, Y. Du, C. Zhao, J. Qi, J. Cao, W. Fei, J. Feng, Controllable synthesis of core-branch Ni3S2/Co9S8 directly on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. J. Power Sources 401, 329–335 (2018)

    CAS  Google Scholar 

  11. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. Rsc Adv. 4(70), 37003–37026 (2014)

    CAS  Google Scholar 

  12. D. Chen, C.-L. Dong, Y. Zou, D. Su, Y.-C. Huang, L. Tao, S. Dou, S. Shen, S. Wang, In situ evolution of highly dispersed amorphous CoOx clusters for oxygen evolution reaction. Nanoscale 9(33), 11969–11975 (2017)

    CAS  PubMed  Google Scholar 

  13. J. Zhong, T. Wu, Q. Wu, S. Du, D. Chen, B. Chen, M. Chang, X. Luo, Y. Liu, N-and S-co-doped graphene sheet-encapsulated Co9S8 nanomaterials as excellent electrocatalysts for the oxygen evolution reaction. J. Power Sources 417, 90–98 (2019)

    CAS  Google Scholar 

  14. Z. Pu, I.S. Amiinu, F. Gao, Z. Xu, C. Zhang, W. Li, G. Li, S. Mu, Efficient strategy for significantly decreasing overpotentials of hydrogen generation via oxidizing small molecules at flexible bifunctional CoSe electrodes. J. Power Sources 401, 238–244 (2018)

    CAS  Google Scholar 

  15. Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen, C. Li, Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 6(24), 15080–15089 (2014)

    CAS  PubMed  Google Scholar 

  16. P. Ganesan, M. Prabu, J. Sanetuntikul, S. Shanmugam, Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal. 5(6), 3625–3637 (2015)

    CAS  Google Scholar 

  17. C. Leng, J. Wei, Z. Liu, R. Xiong, C. Pan, J. Shi, Facile synthesis of PANI-modified CoFe2O4-TiO2 hierarchical flower-like nanoarchitectures with high photocatalytic activity. J. Nanoparticle Res. 15(5), 1643 (2013)

    Google Scholar 

  18. S. Dou, L. Tao, J. Huo, S. Wang, L. Dai, Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 9(4), 1320–1326 (2016)

    CAS  Google Scholar 

  19. H.-W. Chen, C.-W. Kung, C.-M. Tseng, T.-C. Wei, N. Sakai, S. Morita, M. Ikegami, T. Miyasaka, K.-C. Ho, Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode. J. Mater. Chem. A 1(44), 13759–13768 (2013)

    CAS  Google Scholar 

  20. C. Wu, Y. Zhang, D. Dong, H. Xie, J. Li, Co9S8 nanoparticles anchored on nitrogen and sulfur dual-doped carbon nanosheets as highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. Nanoscale 9(34), 12432–12440 (2017)

    CAS  PubMed  Google Scholar 

  21. W. Maneeprakorn, M.A. Malik, P. O'Brien, The preparation of cobalt phosphide and cobalt chalcogenide (CoX, X= S, Se) nanoparticles from single source precursors. J. Mater. Chem. 20(12), 2329–2335 (2010)

    CAS  Google Scholar 

  22. Y. Si, Y. Li, J. Zou, X. Xiong, X. Zeng, J. Zhou, Photocatalytic performance of a novel MOF/BiFeO3 composite. Materials 10(10), 1161 (2017)

    PubMed Central  Google Scholar 

  23. A. Fakhri, A. Feizbakhsh, E. Konoz, A. Niazi, Evaluation of photocatalytic performance for novel Cr2S3–SiO2 nano-catalyst: optimization, quenching, antimicrobial studies. Mater. Res. Express 6(10), 105909 (2019)

    CAS  Google Scholar 

  24. R. Malik, V.K. Tomer, N. Joshi, T. Dankwort, L. Lin, L. Kienle, Au–TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl. Mater. Interfaces 10(40), 34087–34097 (2018)

    CAS  PubMed  Google Scholar 

  25. Q.Y. Li, H. Sun, S. Sun, J.G. Liu, S.P. Cui, Z.R. Nie, Synthesis and photocatalytic performance of a novel hollow network Fe3O4/SiO2/meso-TiO2 (FSmT) composite microspheres. J. Sol-Gel. Sci. Technol. 90(2), 339–347 (2019)

    CAS  Google Scholar 

  26. Saemian, T., Gharagozlou, M., Sadr, M.H. and Naghibi, SA Comparative Study on the Pollutant Removal Efficiency of CoFe2O4@ HKUST-1 MOF and CoFe2O4 Nanoparticles. J. Inorg. Organomet. Polym. Mater.2019. 1–9.

  27. Shi, J., Zhang, H., Yu, Y., Yan, M., Liu, L., Zhu, H., Ye, Y., Zhao, Y. and Guo, J.,. Preparation and Adsorption Properties of Magnetic Composite Microspheres Containing Metal–Organic Double Network Structure. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 1–14.

  28. Kakhki, R.M. and Bina, M., Dispersive Micro-solid Phase Extraction Based on Co3O4 Modified Nanoclinoptilolite for Fast Determination of Malachite Green in the Environmental Water Samples. Journal of Inorganic and Organometallic Polymers and Materials, 2019. 1–5.

  29. Bavarsiha, F., Montazeri-Pour, M. and Rajabi, M., Effect of Non-aqueous Media on Nano-crystalline SrFe12O19 Particles Produced by Co-precipitation with Metal Chlorides and Evaluation of Their Magnetic and Photocatalytic Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2020, .1–11.

  30. Y. Zhou, D. Yan, H. Xu, S. Liu, J. Yang, Y. Qian, Multiwalled carbon nanotube@ aC@ Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries. Nanoscale 7(8), 3520–3525 (2015)

    CAS  PubMed  Google Scholar 

  31. S.K. Srivastava, B. Kartick, S. Choudhury, M. Stamm, Thermally fabricated MoS2-graphene hybrids as high performance anode in lithium ion battery. Mater. Chem. Phys. 183, 383–391 (2016)

    CAS  Google Scholar 

  32. D. Kong, H. He, Q. Song, B. Wang, W. Lv, Q.-H. Yang, L. Zhi, Rational design of MoS 2@ graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy Environ. Sci. 7(10), 3320–3325 (2014)

    CAS  Google Scholar 

  33. J. Barkauskas, L. Mikoliunaite, I. Paklonskaite, P. Genys, J.J. Petroniene, I. Morkvenaite-Vilkonciene, A. Ramanaviciene, U. Samukaite-Bubniene, A. Ramanavicius, Single-walled carbon nanotube based coating modified with reduced graphene oxide for the design of amperometric biosensors. Mater. Sci. Eng. C 98, 515–523 (2019)

    CAS  Google Scholar 

  34. G. López-Polín, M. Jaafar, F. Guinea, R. Roldán, C. Gómez-Navarro, J. Gómez-Herrero, The influence of strain on the elastic constants of graphene. Carbon 124, 42–48 (2017)

    Google Scholar 

  35. S. Colonna, O. Monticelli, J. Gomez, C. Novara, G. Saracco, A. Fina, Effect of morphology and defectiveness of graphene-related materials on the electrical and thermal conductivity of their polymer nanocomposites. Polymer 102, 292–300 (2016)

    CAS  Google Scholar 

  36. Y. Chen, K. Fu, S. Zhu, W. Luo, Y. Wang, Y. Li, E. Hitz, Y. Yao, J. Dai, J. Wan, Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 16(6), 3616–3623 (2016)

    CAS  PubMed  Google Scholar 

  37. J. Oh, H. Yoo, J. Choi, J.Y. Kim, D.S. Lee, M.J. Kim, J.-C. Lee, W.N. Kim, J.C. Grossman, J.H. Park, Significantly reduced thermal conductivity and enhanced thermoelectric properties of single-and bi-layer graphene nanomeshes with sub-10 nm neck-width. Nano Energy 35, 26–35 (2017)

    CAS  Google Scholar 

  38. A. Saynatjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar, R.A. Norwood, N. Peyghambarian, H. Lipsanen, K. Kieu, Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano 7(10), 8441–8446 (2013)

    CAS  PubMed  Google Scholar 

  39. K. Mylvaganam, L. Zhang, Graphene nanosheets: mechanisms for large-area thin films production. Scr. Mater. 115, 145–149 (2016)

    CAS  Google Scholar 

  40. E. Bi, H. Chen, X. Yang, W. Peng, M. Grätzel, L. Han, A quasi core-shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 7(8), 2637–2641 (2014)

    CAS  Google Scholar 

  41. Y. Du, X. Zhu, X. Zhou, L. Hu, Z. Dai, J. Bao, Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage. J. Mater. Chem. A 3(13), 6787–6791 (2015)

    CAS  Google Scholar 

  42. X. Song, L. Tan, X. Wang, L. Zhu, X. Yi, Q. Dong, Synthesis of CoS@ rGO composites with excellent electrochemical performance for supercapacitors. J. Electroanal. Chem. 794, 132–138 (2017)

    CAS  Google Scholar 

  43. Q. Chen, D. Cai, H. Zhan, Construction of reduced graphene oxide nanofibers and cobalt sulfide nanocomposite for pseudocapacitors with enhanced performance. J. Alloy Compd. 706, 126–132 (2017)

    CAS  Google Scholar 

  44. R.A. Moqbel, M.A. Gondal, T.F. Qahtan, M.A. Dastageer, Synthesis of cadmium sulfide-reduced graphene oxide nanocomposites by pulsed laser ablation in liquid for the enhanced photocatalytic reactions in the visible light. Int. J. Energy Res. 42(4), 1487–1495 (2018)

    CAS  Google Scholar 

  45. X. Cao, W. Guo, A. Li, J. Du, L. Du, G. Zhang, H. Liu, Facile synthesis of reduced graphene oxide/CdS nanowire composite aerogel with enhanced visible-light photocatalytic activity. J. Nanoparticle Res. 22(4), 1–14 (2020)

    Google Scholar 

  46. E.S. Agorku, M.A. Mamo, B.B. Mamba, A.C. Pandey, A.K. Mishra, Cobalt-doped ZnS-reduced graphene oxide nanocomposite as an advanced photocatalytic material. J. Porous Mater. 22(1), 47–56 (2015)

    CAS  Google Scholar 

  47. F. Chen, D. Jia, X. Jin, Y. Cao, A. Liu, A general method for the synthesis of graphene oxide-metal sulfide composites with improved photocatalytic activities. Dyes Pigm. 125, 142–150 (2016)

    CAS  Google Scholar 

  48. X. Fu, Y. Zhang, P. Cao, H. Ma, P. Liu, L. He, J. Peng, J. Li, M. Zhai, Radiation synthesis of CdS/reduced graphene oxide nanocomposites for visible-light-driven photocatalytic degradation of organic contaminant. Radiat. Phys. Chem. 123, 79–86 (2016)

    CAS  Google Scholar 

  49. X. Wang, H. Tian, Y. Yang, H. Wang, S. Wang, W. Zheng, Y. Liu, Reduced graphene oxide/CdS for efficiently photocatalystic degradation of methylene blue. J. Alloy Compd. 524, 5–12 (2012)

    CAS  Google Scholar 

  50. M. Bagherzadeh, R. Kaveh, S. Ozkar, S. Akbayrak, Preparation and characterization of a new CdS–NiFe2O4/reduced graphene oxide photocatalyst and its use for degradation of methylene blue under visible light irradiation. Res. Chem. Intermed. 44(10), 5953–5979 (2018)

    CAS  Google Scholar 

  51. W. Kong, Q. Yue, Q. Li, B. Gao, Adsorption of Cd2+ on GO/PAA hydrogel and preliminary recycle to GO/PAA-CdS as efficient photocatalyst. Sci. Total Environ. 668, 1165–1174 (2019)

    CAS  PubMed  Google Scholar 

  52. J.C. Cano-Franco, M. Álvarez-Láinez, Effect of CeO2 content in morphology and optoelectronic properties of TiO2-CeO2 nanoparticles in visible light organic degradation. Mater. Sci. Semicond. Process. 90, 190–197 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

Dr. Cao Y. thanks for the funding from Guangdong Natural Science Foundation (2016A030313054) and Natural Science Foundation of SZU (827-000150 and 860-000002110375).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Cao or Shuangchen Ruan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohail, M., Huang, J., Lai, Z. et al. Synthesis of Flower-Like Co9S8/Reduced Graphene Oxide Nanocomposites and Their Photocatalytic Performance. J Inorg Organomet Polym 30, 5168–5179 (2020). https://doi.org/10.1007/s10904-020-01686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01686-4

Keywords

Navigation