Skip to main content
Log in

Spectroscopic Properties, Electronic Polarizability, and Optical Basicity of Titanium–Cadmium Tellurite Glasses Doped with Different Amounts of Lanthanum

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The authors reported the data found by FT-IR spectroscopy, and ultrasonic velocities investigations of 65TeO2 – 25TiO2 – (10-x) CdO – x La2O3, (0 ≤ x ≤ 10 mol%) of the prepared glass samples. FT-IR spectra of these glass samples have been indicated the cadmium lanthanum tellurite titanate glasses increase the transformation of (TeO4) structural units into (TeO3) structural units with creation of non-bridging oxygen. The mechanical properties have been associated with the results of FT-IR spectra. It was noted that the elastic-moduli, and density of these samples slightly decrease with the increase of lanthanum due to the creation of non-bridging oxygen. UV–visible spectroscopy was recorded at room temperature for these glasses. The increase of Lanthanum shifts the optical spectra to the redshift of the optical bandgap. So, lanthanum is accountable for the increase of non-bridging oxygen due to this shift is obtained. So, the optical bandgap of these glasses has been decreased as well as the refractive index. Polarizability and basicity of the prepared glasses according to the refractive index and optical bandgap have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. Gupta, A. Kaur, A. Khanna, F. Gonzàlez, C. Pesquera, R. Iordanova, B. Chen, Structure-property correlations in TiO2 -Bi2O3 -B2O3 -TeO2 glasses. J. Non-Cryst. Solids 470, 168–177 (2017)

    CAS  Google Scholar 

  2. A. Azuraida, M.K. Halimah, A.A. Sidek, C.A.C. Azurahanim, S.M. Iskandar, M. Ishak, A. Nurazlin, Comparative studies of bismuth and barium boro-tellurite glass system: structural and optical properties. Chalcogenide Lett. 12(10), 497–503 (2015)

    CAS  Google Scholar 

  3. T. Hasegawa, Optical properties of Bi2O3–TeO2–B2O3 glasses. J. Non-Cryst. Solids 357, 2857–2862 (2011)

    CAS  Google Scholar 

  4. A. Amat, M.K. Halimah, A. Nurazlin, Optical properties of [(TeO2)0.7 (B2O3)0.3]1-x (Bi2O3)x glass system. Adv. Mater. Res. 1107, 426–431 (2015)

    Google Scholar 

  5. Y. Zhou, Y. Yang, F. Huang, J. Ren, S. Yuan, G. Chen, Characterization of new tellurite glasses and crystalline phases in the TeO2–PbO–Bi2O3–B2O3 system. J. Non-Cryst. Solids 386, 90–94 (2014)

    CAS  Google Scholar 

  6. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, S.F. Hathot, Optical properties and crystallization of bismuth boro-tellurite glasses. J. Non-Cryst. Solids 476, 15–24 (2017)

    CAS  Google Scholar 

  7. X. Hu, G. Guery, J. Boerstler, J.D. Musgraves, D. Vanderveer, P. Wachtel, K. Richardson, Influence of Bi2O3 content on the crystallization behavior of TeO2–Bi2O3–ZnO glass system. J. Non-Cryst. Solids 358(5), 952–958 (2012)

    CAS  Google Scholar 

  8. G. Zhao, Y. Tian, H. Fan, J. Zhang, L. Hu, Properties and Structures of Bi2O3–B2O3–TeO2 Glass. J. Mater. Sci. Technol. 29(3), 209–214 (2013)

    CAS  Google Scholar 

  9. N. Elkhoshkhany, E. Syala, Kinetic characterization of TeO2–Bi2O3 –V2O5–Na2O–TiO2 glass system. Ceram. Int. 43(8), 6156–6162 (2017)

    CAS  Google Scholar 

  10. P. Mošner, K. Vosejpková, L. Koudelka, L. Montagne, B. Revel, Structure and properties of glasses in ZnO–P2O5–TeO2 system. J. Non-Cryst. Solids 357(14), 2648–2652 (2011)

    Google Scholar 

  11. M.F. Pércio, S.D. de Campos, R. Schneider, E.A. de Campos, Effect of the addition of TiO2, ZrO2, V2O5 and Nb2O5 on the stability parameters of the Li2O–BaO–SiO2 glass. J. Non-Cryst. Solids 411, 125–131 (2015)

    Google Scholar 

  12. I. Kabalci, H. Gökçe, Investigation of infrared and Raman spectra of TeO2-Nb2O5-TiO2 glasses. Acta Phys. Pol. A 125(4), 20–25 (2014)

    Google Scholar 

  13. M.S. Gaafar, I.S. Mahmoud, Ultrasonic relaxation of some CdO boro-tellurate glasses. Can. J. Phys. 94(10), 1008–1016 (2016)

    CAS  Google Scholar 

  14. S.N. Nazrin, M.K. Halimah, F.D. Muhammad, J.S. Yip, L. Hasnimulyati, M.F. Faznny, I. Zaitizila, The effect of erbium oxide in physical and structural properties of zinc tellurite glass system. J. Non-Cryst. Solids 490, 35–43 (2018)

    CAS  Google Scholar 

  15. C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, B. Peng, Spectroscopic properties of new Yb3+-doped TeO2–ZnO–Nb2O5 based tellurite glasses with high emission cross-section. Opt. Mater. 34(9), 1549–1552 (2012)

    CAS  Google Scholar 

  16. E.A.A. Wahab, K.S. Shaaban, Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Mater. Res. Express 5(2), 025207 (2018)

    Google Scholar 

  17. K.S. Shaaban, S.M. Abo-Naf, M.E.M. Hassouna, Physical and structural properties of lithium borate glasses containing MoO3. Silicon 11, 2421–2428 (2019)

    CAS  Google Scholar 

  18. K.H.S. Shaaban, S.M. Abo-naf, A.M. Abd Elnaeim, M.E.M. Hassouna, studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses. Appl. Phys. A 123, 457–466 (2017)

    Google Scholar 

  19. K.S. Shaaban, Y. El Sayed, Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. Optik 203, 163976 (2020)

    CAS  Google Scholar 

  20. R.S. Gedam, D.D. Ramteke, Synthesis and characterization of lithium borate glasses containing La2O3. Trans. Indian Inst. Met. 65(1), 31–35 (2011)

    Google Scholar 

  21. O.L.G. Alderman, C.J. Benmore, A. Tamalonis, R. Weber, Rare-earth titanate melt structure and glass formation. Int. J. Appl. Glass Sci. (2019). https://doi.org/10.1111/ijag.13479

    Article  Google Scholar 

  22. D. Zhou, R. Wang, Z. Yang, Z. Song, Z. Yin, J. Qiu, Spectroscopic properties of Tm3+ doped TeO2-R2O-La2O3 glasses for 1.47 μm optical amplifiers. J. Non-Cryst. Solids 357, 2409–2412 (2011)

    CAS  Google Scholar 

  23. K.S. Shaaban, E.S. Yousef, S.A. Mahmoud et al., Mechanical, structural and crystallization properties in titanate doped phosphate glasses. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01574-x

    Article  Google Scholar 

  24. M. Prashant Kumar, T. Sankarappa, DC conductivity of rare earth ions doped vanado-tellurite glasses. J. Non-Cryst. Solids 355(4–5), 295–300 (2009)

    CAS  Google Scholar 

  25. K. Maheshvaran, P.K. Veeran, K. Marimuthu, Structural and optical studies on Eu3+ doped boro-tellurite glasses. Solid State Sci. 17, 54–62 (2013)

    CAS  Google Scholar 

  26. G. Lakshminarayana, S.O. Baki, A. Lira, I.V. Kityk, M.A. Mahdi, Structural, thermal, and optical absorption studies of Er3+, Tm3+, and Pr3+-doped borotellurite glasses. J. Non-Cryst. Solids 459, 150–159 (2017)

    CAS  Google Scholar 

  27. K. Shaaban, E.A. Abdel Wahab, A.A. El-Maaref et al., Judd-Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03065-8

    Article  Google Scholar 

  28. M.H. Bhat, M. Ganguli, K.J. Rao, Investigation of the alkali effect in borotellurite glasses—the role of NBO-BO switching in ion transport. Curr. Sci. 86, 676–691 (2004)

    CAS  Google Scholar 

  29. W.M. Abd-Allah, H.A. Saudi, K.S. Shaaban, H.A. Farroh, Investigation of structural and radiation shielding properties of 40B2O3–30PbO–(30–x) BaO-x ZnO glass system. Appl. Phys. A 125(4), 275 (2019)

    Google Scholar 

  30. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B2O3–30Li2O–5Al2O3) glasses doped with titanate. J. Electron. Mater. 49, 2040–2049 (2020)

    CAS  Google Scholar 

  31. N. Berwal, S. Dhankhar, R.S. Preeti Sharma, R. Kundu, N. Kishor Punia, Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses. J. Mol. Struct. 1127, 636–644 (2017)

    CAS  Google Scholar 

  32. Y.B. Saddeek, K.A. Aly, K.S. Shaaban, A.M. Ali, M.M. Alqhtani, A.M. Alshehri, E.A. Abdel Wahab, Physical properties of B2O3 –TeO2 –Bi2O3 glass system. J. Non-Cryst. Solids 498, 82–88 (2018)

    CAS  Google Scholar 

  33. H.A. Saudi, W.M. Abd-Allah, K.S. Shaaban, Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J. Mater. Sci.: Mater. Electron. 31, 6963–6976 (2020)

    CAS  Google Scholar 

  34. R.M. El-Sharkawy, K.S. Shaaban, R. Elsaman, E.A. Allam, A. El-Taher, M.E. Mahmoud, Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20–x) CdO based on nanometal oxides. J. Non-Cryst. Solids 528(15), 119754 (2020)

    CAS  Google Scholar 

  35. K.S. Shaaban, W.M. Abd-Allah, Y.B. Saddeek, Gamma rays interactions with CdO-doped lead silicate glasses. Opt. Quant. Electron. 52, 3 (2020). https://doi.org/10.1007/s11082-019-2094-3

    Article  CAS  Google Scholar 

  36. E.A. Abdel Wahab, K.S. Shaaban, R. Elsaman et al., Radiation shielding, and physical properties of lead borate glass doped ZrO2 nanoparticles. Appl. Phys. A 125, 869 (2019)

    CAS  Google Scholar 

  37. U. Veit, C. Rüssel, Elastic properties of quaternary glasses in the MgO–CaO–Al2O3–SiO2 system: modelling versus measurement. J. Mater. Sci. 52, 8159 (2017)

    CAS  Google Scholar 

  38. K.S. Shaaban, Y.B. Saddeek, Effect of MoO3 content on structural, thermal, mechanical and optical properties of (B2O3-SiO2-Bi2O3-Na2O-Fe2O3) glass system. Silicon 9, 785–793 (2017)

    CAS  Google Scholar 

  39. A. Makishima, J.D. Mackenzie, Direct calculation of Young's moidulus of glass. J. Non-Cryst. Solids 12(1), 35–45 (1973)

    CAS  Google Scholar 

  40. A. Makishima, J.D. Mackenzie, Calculation of bulk modulus, shear modulus and Poisson's ratio of glass. J. Non-Cryst. Solids 17(2), 147–157 (1975)

    CAS  Google Scholar 

  41. K. Varshneya Arun, Fundamentals of Inorganic Glasses (Academic Press Limited, New York, 1994), p. 33

    Google Scholar 

  42. T.A. Taha, A.S. Abouhaswa, Preparation and optical properties of borate glass doped with MnO2. J. Mater. Sci.: Mater. Electron. 29(10), 8100 (2018)

    CAS  Google Scholar 

  43. C. Tirupataiah, T. Narendrudu, S. Suresh, P. Srinivasa Rao, P.M. Vinaya Teja, M.V. Sambasiva Rao, D. Krishna Rao, Influence of valence state of copper ions on structural and spectroscopic properties of multi-component PbO–Al2O3–TeO2 –GeO2–SiO2 glass ceramic system- a possible material for memory switching devices. Opt. Mater. 73, 7 (2017)

    CAS  Google Scholar 

  44. D. Sushama, P. Predeep, Thermal and optical studies of rare earth doped tungston-tellurite glasses. J. Appl. Phys. Math. 4(2), 139 (2014)

    CAS  Google Scholar 

  45. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324–1324 (1953)

    CAS  Google Scholar 

  46. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79(3), 1736 (1996)

    CAS  Google Scholar 

  47. V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid State Chem. 163(1), 100 (2002)

    CAS  Google Scholar 

  48. L. Singh, V. Thakur, R. Punia, R.S. Kundu, A. Singh, Structural and optical properties of barium titanate modified bismuth borate glasses. Solid State Sci. 37, 64 (2014)

    CAS  Google Scholar 

  49. X. Zhao, X. Wang, H. Lin, Z. Wang, Electronic polarizability and optical basicity of lanthanide oxides. Phys. B 392(1–2), 132–136 (2007)

    CAS  Google Scholar 

  50. S. Bale, N.S. Rao, S. Rahman, Spectroscopic studies of Bi2O3–Li2O–ZnO–B2O3 glasses. Solid State Sci. 10(3), 326–331 (2008)

    CAS  Google Scholar 

  51. J.A. Duffy, A common optical basicity scale for oxide and fluoride glasses. J. Non-Cryst. Solids 109(1), 35–39 (1989)

    CAS  Google Scholar 

  52. J.A. Duffy, Electronic polarizability and related properties of the oxide ion. Phys. Chem. Glass 30, 1 (1989)

    CAS  Google Scholar 

  53. J.A. Duffy, Optical basicity of titanium (IV) oxide and zirconium (IV) oxide. J. Am. Ceram. Soc. 72, 2012 (1989)

    CAS  Google Scholar 

  54. J.A. Duffy, B. Harris, Linear and nonlinear optical properties of simple oxide II. Ironmak. Steelmak. 22, 132 (1995)

    CAS  Google Scholar 

  55. J.A. Duffy, M.D. Ingram, in: D. Uhlman, N. Kreidl (Eds.), Optical Properties of Glass (American Ceramic Society, Westerville, 1991).

Download references

Acknowledgements

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P.2/38/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. S. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K.S., Koubisy, M.S.I., Zahran, H.Y. et al. Spectroscopic Properties, Electronic Polarizability, and Optical Basicity of Titanium–Cadmium Tellurite Glasses Doped with Different Amounts of Lanthanum. J Inorg Organomet Polym 30, 4999–5008 (2020). https://doi.org/10.1007/s10904-020-01640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01640-4

Keywords

Navigation