Skip to main content

Advertisement

Log in

Development and Characterization of Functionalized Titanium Dioxide-Reinforced Sulfonated Copolyimide (SPI/TiO2) Nanocomposite Membranes with Improved Mechanical, Thermal, and Electrochemical Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Sulfonated polyimide (SPI) membranes are regarded as the potential alternative to Nafion as a polymer electrolyte membrane (PEM) for fuel cells. Herein, sulfonated copolyimide is synthesized through a direct polymerization method using 1,4,5,8-naphthalene tetra carboxylic dianhydride (NDTA), and sulfonated diamine 4,4′-diamino diphenyl-2,2′-disulfonic acid (BDSA). Sulfonated copolyimide is re-dissolved in dimethyl sulfoxide for the fabrication of thin films. The nanocomposites of both 1.0 and 2.0% of the functionalized TiO2-reinforced (SPI/TiO2) are fabricated by blending and casting method. TiO2 nanoparticles are surface-functionalized using (3-aminopropyl)triethoxysilane (APTES). Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared FTIR), and Brunauer-Emmitt-Teller (BET) techniques are used to reveal the distinctive characteristics of the newly synthesized SPI/TiO2 nanocomposite membranes. The as-synthesized SPI/TiO2 membranes are used to investigate their physicochemical and electrochemical parameters, including water uptake, ion exchange capacity (IEC), swelling property, oxidation stability, and dimensional change stability. The SPI and SPI/TiO2 composite membranes exhibit an ion-exchange value of 1.412 to 1.286 mmol/g. The SPI/TiO2 composite membranes show excellent H2O stability at room temperature. Overall, the results indicate that the SPI/TiO2 membranes exhibit the potential as PEM for direct methanol fuel cell applications. These nanocomposite membranes are also applicable in clean energy production from environment-friendly sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Ibaraki, M. Tanaka, H. Kawakami, Fast surface proton conduction on acid-doped polymer nanofibers in polymer electrolyte composite membranes. Electrochem. Acta 296, 1042–1048 (2019). https://doi.org/10.1016/j.electacta.2018.11.157

    Article  CAS  Google Scholar 

  2. M. Feng, Y. Huang, T. Cheng, X. Liu, Synergistic effect of graphene oxide and carbon nanotubes on sulfonated poly(arylene ether nitrile)-based proton conducting membranes. Int. J. Hydrogen Energy 42(12), 8224–8232 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.089

    Article  CAS  Google Scholar 

  3. C.Y. Wong, W.Y. Wong, K. Ramya et al., Additives in proton exchange membranes for low- and high-temperature fuel cell applications: a review. Int. J. Hydrogen Energy 44(12), 6116–6135 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.084

    Article  CAS  Google Scholar 

  4. T.J. Peckham, J. Schmeisser, M. Rodgers, S. Holdcroft, Main-chain, statistically sulfonated proton exchange membranes: the relationships of acid concentration and proton mobility to water content and their effect upon proton conductivity. J. Mater. Chem. 17(30), 3255–3268 (2017). https://doi.org/10.1039/b702339a

    Article  Google Scholar 

  5. F. Ali, M. Waseem, R. Khurshid, A. Afzal, TiO2 reinforced high-performance epoxy-co-polyamide composite coatings. Prog. Org. Coat. 146, 105726 (2020). https://doi.org/10.1016/j.porgcoat.2020.105726

    Article  CAS  Google Scholar 

  6. C.C. Yang, Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J. Membr. Sci. 288(1–2), 51–60 (2007). https://doi.org/10.1016/j.memsci.2006.10.048

    Article  CAS  Google Scholar 

  7. Y. Teng, Z. Sun, K. Zhang, W. Lu, Microstructure and mechanical properties of high-pressure sintered Al 2O3/SiC nanocomposites. J. Alloys Compd. 578, 67–71 (2013). https://doi.org/10.1016/j.jallcom.2013.05.009

    Article  CAS  Google Scholar 

  8. F. Ali, N. Ali, A. Madiha, S. Amir, S. Syed, S, Muhammad B, Epoxy polyamide composites reinforced with silica nanorods: fabrication, thermal and morphological investigations. J. Inorg. Organometall. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01518-5

    Article  Google Scholar 

  9. Z.G. Shao, P. Joghee, I.M. Hsing, Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J. Membr. Sci. 229(1–2), 43–51 (2004). https://doi.org/10.1016/j.memsci.2003.09.014

    Article  CAS  Google Scholar 

  10. A.S. Aricò, V. Baglio, A. Di Blasi, E. Modica, P.L. Antonucci, V. Antonucci, Surface properties of inorganic fillers for application in composite membranes-direct methanol fuel cells. J. Power Sources 128(2), 113–118 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.063

    Article  CAS  Google Scholar 

  11. N. Ali, F. Ali, S. Saeed, S.S. Shah, M. Bilal, Structural characteristics and electrochemical properties of sulfonated polyimide clay-based composite fabricated by a solution casting method. J. Mater. Sci. Mater. Electron. 30(21), 19164–19172 (2019). https://doi.org/10.1007/s10854-019-02273-1

    Article  CAS  Google Scholar 

  12. Y. Nagao, Proton-conductivity enhancement in polymer thin films. Langmuir 33(44), 12547–12558 (2017). https://doi.org/10.1021/acs.langmuir.7b01484

    Article  CAS  PubMed  Google Scholar 

  13. R. Azouani, A. Soloviev, M. Benmami, K. Chhor, J.-F. Bocquet, A. Kanaev, Stability and growth of titanium-oxo-alkoxy TixOy(OiPr)z clusters. J. Phys. Chem. C 111(44), 16243–16248 (2007). https://doi.org/10.1021/jp073949h

    Article  CAS  Google Scholar 

  14. B. Wang, L. Hong, Y. Li, L. Zhao, C. Zhao, H. Na, Property enhancement effects of side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) on nafion composite membranes for direct methanol fuel cells. ACS Appl. Mater. Interfaces 9(37), 32227–32236 (2017). https://doi.org/10.1021/acsami.7b08566

    Article  CAS  PubMed  Google Scholar 

  15. J. Miyake, M. Kusakabe, A. Tsutsumida, K. Miyatake, Remarkable reinforcement effect in sulfonated aromatic polymers as fuel cell membrane. ACS Appl. Energy Mater. 1(3), 1233–1238 (2018). https://doi.org/10.1021/acsaem.7b00349

    Article  CAS  Google Scholar 

  16. A. Akbari, E. Aliyarizadeh, S.M. Mojallali Rostami, M. Homayoonfal, Novel sulfonated polyamide thin-film composite nanofiltration membranes with improved water flux and anti-fouling properties. Desalination 377, 11–22 (2016). https://doi.org/10.1016/j.desal.2015.08.025

    Article  CAS  Google Scholar 

  17. L. Xia, J.R. McCutcheon, Understanding the influence of solvents on the intrinsic properties and performance of polyamide thin film composite membranes. Sep. Purif. Technol. (2019). https://doi.org/10.1016/j.seppur.2019.116398

    Article  Google Scholar 

  18. Z. Li, W. Dai, L. Yu et al., Properties investigation of sulfonated poly (ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application. ACS Appl. Mater. Interfaces 6(21), 18885–18893 (2014). https://doi.org/10.1021/am5047125

    Article  CAS  PubMed  Google Scholar 

  19. R. Wycisk, P.N. Pintauro, W. Wang, S. O’Connor, Polyphosphazene membranes. I. Solid-state photocrosslinking of poly[(4-ethylphenoxy)-(phenoxy)phosphazene]. J. Appl. Polym. Sci. 59(10), 1607–1617 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960307)59:10<1607:AID-APP13>3.0.CO;2-T

    Article  CAS  Google Scholar 

  20. Graves R, Pintauro PN. Photocrosslinking of poly [( alkylphenoxy ) ( phenoxy ) phosphazene ] films. Polymer (Guildf) 827–836 (1997).

  21. D. Sachdev, G.R. Wilson, N.M. Srivastava, A. Dubey, Debenzylation of vanillic acid over sulfosuccinic acid functionalized mesoporous silica nanocomposites. Catal. Commun. 51, 90–94 (2014). https://doi.org/10.1016/j.catcom.2014.03.001

    Article  CAS  Google Scholar 

  22. M.S. Tutgun, D. Sinirlioglu, S.U. Celik, A. Bozkurt, Investigation of nanocomposite membranes based on crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and hexagonal boron nitride. J. Polym. Res. 22(4), 1–11 (2015). https://doi.org/10.1007/s10965-015-0678-6

    Article  CAS  Google Scholar 

  23. A. Haragirimana, P.B. Ingabire, Y. Zhu et al., Four-polymer blend proton exchange membranes derived from sulfonated poly(aryl ether sulfone)s with various sulfonation degrees for application in fuel cells. J. Membr. Sci. 583, 209–219 (2019). https://doi.org/10.1016/j.memsci.2019.04.014

    Article  CAS  Google Scholar 

  24. H.B. Park, C.H. Lee, J.Y. Sohn, Y.M. Lee, B.D. Freeman, H.J. Kim, Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. J. Membr. Sci. 285(1–2), 432–443 (2006). https://doi.org/10.1016/j.memsci.2006.09.026

    Article  CAS  Google Scholar 

  25. N. Ali, A. Said, F. Ali et al., Photocatalytic degradation of congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance. J. Water Air Soil. Pollut. 231, 50 (2020). https://doi.org/10.1007/s11270-020-4410-8

    Article  CAS  Google Scholar 

  26. I. Kamal, Aly, Liquid crystalline polymers 3. Synthesis and liquid crystal properties of thermotropic poly(arylidene-ether)s and copolymers containing cycloalkanones moiety in the polymer backbone. J. Macromol. Sci. Chem. A. 37, 93–115 (2000)

    Article  Google Scholar 

  27. M.A. Abd-Alla, K.I. Aly, Arylidene polymers. Synthesis, characterization and morphology of new polyesters of diarylidenecycloalkanones containing thianthrene unit. J. Macromol. Sci. A 28, 251–267 (1991)

    Article  Google Scholar 

  28. N.S. Al-Muaikel, K.I. Aly, A.H. Mahmoud, Synthesis, characterization and antimicrobial properties of new poly (ether-ketone)s and copoly(ether-ketone)s containing diarylidenecycloalkanone moieties in the main chain. J. Appl. Polym. Sci. 108(5), 3138–3147 (2008)

    Article  CAS  Google Scholar 

  29. K.I. Aly, N.S. Al-Muaikel, M.A. Abdel-R, H.T. Amal, Liquid crystalline polymers XVI. Thermotropic liquid crystalline copoly-(arylidene-ether)/TiO2 nanocomposites: synthesis, characterization and applications. Liq. Cryst. 46, 1734–1746 (2019)

    Article  CAS  Google Scholar 

  30. C. Wang, B. Shen, Y. Zhou et al., Sulfonated aromatic polyamides containing nitrile groups as proton exchange fuel cell membranes. Int. J. Hydrogen Energy 40(19), 6422–6429 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.078

    Article  CAS  Google Scholar 

  31. C. Li, Y. Zhang, X. Liu et al., Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells. J. Mater. Sci. 53(7), 5501–5510 (2018). https://doi.org/10.1007/s10853-017-1945-1

    Article  CAS  Google Scholar 

  32. K.L. Zaharieva, K.I. Milenova, V. Rives, R. Trujillano, Mixed cobalt-copper ferrite-type materials: synthesis and photocatalytic efficiency in degradation of Reactive Black 5 dye under UV-light irradiation. Bulg. Chem. Commun. 47(C), 105–111 (2015)

    Google Scholar 

  33. S. Agnihotri, P.B. Mota, M. Rostam-abadi, M.J. Rood, Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation. Langmuir 12, 896–904 (2005)

    Article  Google Scholar 

  34. K.M. Nouel, P.S. Fedkiw, Na ® on 1-based composite polymer electrolyte membranes. 43(97) (1998)

  35. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007). https://doi.org/10.1063/1.2432410

    Article  CAS  PubMed  Google Scholar 

  36. N.N. Gumbi, J. Li, B.B. Mamba, E.N. Nxumalo, Relating the performance of sulfonated thin-film composite nanofiltration membranes to structural properties of macrovoid-free polyeth. Desalination 474(July 2019), 114176 (2020). https://doi.org/10.1016/j.desal.2019.114176

    Article  CAS  Google Scholar 

  37. Y. Yin, Y. Suto, T. Sakabe et al., Water stability of sulfonated polyimide membranes. Macromolecules 39(3), 1189–1198 (2006). https://doi.org/10.1021/ma0523769

    Article  CAS  Google Scholar 

  38. J. Fang, X. Guo, S. Harada et al., Novel sulfonated polyimides as polyelectrolytes for fuel cell application: 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid. Macromolecules 35(24), 9022–9028 (2002). https://doi.org/10.1021/ma020005b

    Article  CAS  Google Scholar 

  39. F. Ali, S. Saeed, S. Shah et al., Sulfonated polyimide-clay thin films for energy application. Recent Pat. Nanotechnol. 10(999), 1–1 (2016). https://doi.org/10.2174/1872210510666161025131146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Farman Ali is highly grateful to the Higher Education Commission of Pakistan for supporting this work through the NRPU project (Number No: 5723/KPK/NRPU/R&D/HEC/2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nisar Ali or Muhammad Bilal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Said, A., Ali, F. et al. Development and Characterization of Functionalized Titanium Dioxide-Reinforced Sulfonated Copolyimide (SPI/TiO2) Nanocomposite Membranes with Improved Mechanical, Thermal, and Electrochemical Properties. J Inorg Organomet Polym 30, 4585–4596 (2020). https://doi.org/10.1007/s10904-020-01636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01636-0

Keywords

Navigation