Skip to main content
Log in

Different Morphology MoS2 Over the g-C3N4 as a Boosted Photo-Catalyst for Pollutant Removal Under Visible-Light

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The nano-spherical MoS2(F)/g-C3N4 hetero-junction was successfully synthesized by calcining the thiourea coated MoS2(F), where the thin g-C3N4 nano-sheets were grown on the surface of MoS2(F) nano-sphere. The enhanced photo-catalytic performance and stability of the sample were assessed by degrading the Rhodamine B under the irradiation of sunlight, which could be attributed to the widened spectral absorption range and improved electron–hole separation rate. Based on above results, the photo-catalytic mechanism involving redox reactions was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Genthe, T. Kapwata, W.L. Roux, J. Chamier, C.Y. Wright, The reach of human health risks associated with metals/metalloids in water and vegetables along a contaminated river catchment: South Africa and Mozambique. Chemosphere 199, 1–9 (2018)

    CAS  PubMed  Google Scholar 

  2. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92(3), 407–418 (2011)

    CAS  Google Scholar 

  3. B. Ramalingam, T. Parandhaman, P. Choudhary, S.K. Das, Biomaterial functionalized graphene-magnetite nanocomposite: a novel approach for simultaneous removal of anionic dyes and heavy-metal ions. ACS Sustain. Chem. Eng. 6(5), 6328–6341 (2018)

    CAS  Google Scholar 

  4. X.L. Yin, G.Y. He, B. Sun, W.J. Jiang, D.J. Xue, A.D. Xia, L.J. Wan, J.S. Hu, Rational design and electron transfer kinetics of MoS2/CdS nanodots-on-nanorods for efficient visible-light-driven hydrogen generation. Nano Energy 28, 319–329 (2016)

    CAS  Google Scholar 

  5. D. Zeng, P. Wu, W. Ong, B. Tang, M. Wu, H. Zheng, Construction of network-like and flower-like 2H-MoSe2 nanostructures coupled with porous g-C3N4 for noble-metal-free photocatalytic H2 evolution under visible light. Appl. Catal. B 233, 26–34 (2018)

    CAS  Google Scholar 

  6. M. Zhao, H. Xu, S. Ouyang et al., Fabricating a Au@TiO2 plasmonic system to elucidate alkali-induced enhancement of photocatalytic H2 evolution: surface potential shift or methanol oxidation acceleration. ACS Catal. 8(5), 4266–4277 (2018)

    CAS  Google Scholar 

  7. J.H. Kou, J. Gao, Z.S. Li, Z.G. Zou, Research on photocatalytic degradation properties of organics with different new photocatalysts. Curr. Org. Chem. 14(07), 728–744 (2010)

    CAS  Google Scholar 

  8. H. Jia, W. He, W.G. Wame, X. Han, B. Zhang, S. Zhang, Generation of reactive oxygen species, electrons/holes, and photocatalytic degradation of rhodamine B by photoexcited CdS and Ag2S micro-nano structures. J. Phys. Chem. C. 118(37), 21447–21456 (2014)

    CAS  Google Scholar 

  9. D. Jiang, J. Li, C. Xing, Z. Zhang, S. Meng, M. Chen, Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight. ACS Appl. Mater. Interfaces 7(34), 19234–19242 (2015)

    CAS  PubMed  Google Scholar 

  10. N. Roy, N. Suzuki, C. Terashima, A. Fujishima, Recent improvements in the production of solar fuels: from CO2 reduction to water splitting and artificial photosynthesis. Bull. Chem. Soc. Jpn. 92, 178–192 (2019)

    CAS  Google Scholar 

  11. Z. Wang, C. Li, K. Domen, Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48, 2109–2125 (2019)

    CAS  PubMed  Google Scholar 

  12. K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5(8), 3149–3171 (2013)

    CAS  PubMed  Google Scholar 

  13. S. Kumar, T. Surendar, A. Baruah, V. Shanker, Synthesis of a novel and stable g-C3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. J. Mater. Chem. 1(17), 5333–5340 (2013)

    CAS  Google Scholar 

  14. G. Dong, L. Zhang, Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. J. Mater. Chem. 22(3), 1160–1166 (2012)

    CAS  Google Scholar 

  15. Y. Zhang, J. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4(17), 5300–5303 (2012)

    CAS  PubMed  Google Scholar 

  16. A. Nikokavoura, C. Trapalis, Graphene and g-C3N4 based photocatalysts for NOx removal: a review. Appl. Surf. Sci. 430, 18–52 (2018)

    CAS  Google Scholar 

  17. J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(23), 970–974 (2015)

    CAS  PubMed  Google Scholar 

  18. Y. Hou, F. Zuo, A.P. Dagg et al., Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 26(29), 5043–5049 (2014)

    CAS  PubMed  Google Scholar 

  19. Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51(1), 68–89 (2012)

    CAS  Google Scholar 

  20. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017)

    CAS  Google Scholar 

  21. W.L. Yu, J.X. Chen, T.T. Shang, L.F. Chen, L. Gu, T.Y. Peng, Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl. Catal. B 219, 693–704 (2017)

    CAS  Google Scholar 

  22. Q.Q. Liu, C.Y. Fan, H. Tang, X.J. Sun, J. Yang, X.N. Cheng, One-pot synthesis of g-C3N4/V2O5 composites for visible light-driven photocatalytic activity. Appl. Surf. Sci. 358, 188–195 (2015)

    CAS  Google Scholar 

  23. X.Z. Ma, J.T. Zhang, B. Wang, Q.G. Li, S. Chu, Hierarchical Cu2O foam/g-C3N4 photocathode for photoelectrochemical hydrogen production. Appl. Surf. Sci. 427, 907–916 (2018)

    CAS  Google Scholar 

  24. W. Liu, J. Shen, X.F. Yang, Q.Q. Liu, H. Tang, Dual Z-scheme g-C3N4/Ag3PO4 /Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting. Appl. Surf. Sci. 456, 369–378 (2018)

    CAS  Google Scholar 

  25. W. Liu, J. Shen, Q.Q. Liu, X.F. Yang, H. Tang, Porous MoP network structure as co-catalyst for H2 evolution over g-C3N4 nanosheets. Appl. Surf. Sci. 462, 822–830 (2018)

    CAS  Google Scholar 

  26. W. Peng, Y. Li, F. Zhang et al., Roles of two-dimensional transition metal dichalcogenides as cocatalysts in photocatalytic hydrogen evolution and environmental remediation. Ind. Eng. Chem. Res. 56(16), 4611–4626 (2017)

    CAS  Google Scholar 

  27. S.K. Maji, S. Yu, K. Chung et al., Synergistic nanozymetic activity of hybrid gold bipyramid-molybdenum disulfide Core@Shell nanostructures for two-photon imaging and anticancer therapy. ACS Appl. Mater. Interfaces 10(49), 42068–42076 (2018)

    CAS  PubMed  Google Scholar 

  28. K.K. Paul, L.P. Mawlong, P.K. Giri et al., Trion-inhibited strong excitonic emission and broadband giant photoresponsivity from chemical vapor-deposited monolayer MoS2 grown in situ on TiO2 nanostructure. ACS Appl. Mater. Interfaces 10(49), 42812–42825 (2018)

    CAS  PubMed  Google Scholar 

  29. B. Chen, Y. Meng, J. Sha et al., Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale. 10(1), 34–68 (2018)

    CAS  Google Scholar 

  30. X. Shi, M. Fujitsuka, S. Kim et al., Faster electron injection and more active sites for efficient photocatalytic H2 evolution in g-C3N4/MoS2 hybrid. Small 14(11), e1703277 (2018)

    PubMed  Google Scholar 

  31. X. Lu, Y. Jin, X. Zhang, G. Xu, Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance. Dalton Trans. 45(39), 15406–15414 (2016)

    CAS  PubMed  Google Scholar 

  32. Y.Z. Liu, H.Y. Zhang, J. Ke, J.Q. Zhang, W.J. Tian, X.Y. Xu, X.G. Duan, H.Q. Sun, M.O. Tade, S.B. Wang, 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B 228, 64–74 (2018)

    CAS  Google Scholar 

  33. Z. Lan, Y. Yu, J. Yao et al., The band structure and photocatalytic mechanism of MoS2-modified C3N4 photocatalysts with improved visible photocatalytic activity. Mater. Res. Bull. 102, 433–439 (2018)

    CAS  Google Scholar 

  34. C.Y. Zhai, M.J. Sun, L.X. Zeng, M.Q. Xue, J.G. Pan, Y.K. Du, M.S. Zhu, Construction of Pt/graphitic C3N4/MoS2 heterostructures on photo-enhanced electrocatalytic oxidation of small organic molecules. Appl. Catal. B 243, 283–293 (2019)

    CAS  Google Scholar 

  35. N. Li, J. Zhou, Z.Q. Sheng, W. Xiao, Molten salt-mediated formation of g-C3N4-MoS2 for visible-light-driven photocatalytic hydrogen evolution. Appl. Surf. Sci. 430, 218–224 (2018)

    CAS  Google Scholar 

  36. H. Huang, C. Du, H. Shi et al., Water-soluble monolayer molybdenum disulfide quantum dots with upconversion fluorescence. Part. Part. Syst. Charact. 32(1), 72–79 (2014)

    Google Scholar 

  37. Q. Xu, C. Jiang, B. Cheng et al., Enhanced visible-light photocatalytic H2-generation activity of carbon/g-C3N4 nanocomposites prepared by two-step thermal treatment. Dalton Trans. 46(32), 10611–10619 (2017)

    CAS  PubMed  Google Scholar 

  38. X. Lu, Y. Jin, X. Zhang et al., Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance. Dalton Trans. 45(39), 15406–15414 (2016)

    CAS  PubMed  Google Scholar 

  39. H. Zhang, W. Tian, L. Zhou, H. Sun, M. Tade, S. Wang, Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation. Appl. Catal. B 223, 2–9 (2017)

    Google Scholar 

  40. J. Wen, J. Xie, X. Yang et al., Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: an insight into the trifunctional roles of nanocarbons. ACS Sustain. Chem. Eng. 5(3), 2224–2236 (2017)

    CAS  Google Scholar 

  41. X. Jin, X. Fan, J. Tian et al., MoS2 quantum dot decorated g-C3N4 composite photocatalyst with enhanced hydrogen evolution performance. RSC Adv. 6(58), 52611–52619 (2016)

    CAS  Google Scholar 

  42. J. Ke, J. Liu, H. Sun, H. Zhang, X. Duan, P. Liang, X. Li, M.O. Tade, S. Liu, S. Wang, Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Appl. Catal. B 200, 47–55 (2017)

    CAS  Google Scholar 

  43. M.B. Stevens, L.J. Enman, A.S. Batchellor, M.R. Cosby, A.E. Vise, C.D.M. Trang, Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 29(1), 120–140 (2016)

    Google Scholar 

  44. W. Jiang, C. An, J. Liu et al., Facile aqueous synthesis of β-AgI nanoplates as efficient visible-light-responsive photocatalyst. Dalton Trans. 43(1), 300–305 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Runping Wang or Yanzhen Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wang, Y., Mao, S. et al. Different Morphology MoS2 Over the g-C3N4 as a Boosted Photo-Catalyst for Pollutant Removal Under Visible-Light. J Inorg Organomet Polym 31, 32–42 (2021). https://doi.org/10.1007/s10904-020-01626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01626-2

Keywords

Navigation