Skip to main content

Advertisement

Log in

Synthesis of Mesoporous Hydroxyapatite with Controlled Pore Size Using the Chitosan as an Organic Modifier: Investigating the Effect of the Weight Ratio and pH Value of Chitosan on the Structural and Morphological Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present research, the mesoporous hydroxyapatite nanoparticles were synthesized by the chemical precipitation method in the absence and presence of different weight ratios (0, 0.1, and 0.3 g) of chitosan as an organic modifier. The effects of different weight ratios and pH values (8, 9, and 10) of chitosan on the structural characteristics of the mesoporous hydroxyapatite nanoparticles were also investigated. Then, all the prepared samples were calcined at 650 °C for 3 h and their structure, morphology, surface area, and pore size distribution were characterized by X-ray Diffraction (XRD) technique, Field Emission Scanning Electron and Transmission Electron Microscopy (FE-SEM & TEM), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray spectrometer (EDX), and finally Brunauer–Emmett–Teller (BET) technique. The XRD analysis showed that the crystalline size of the synthesized HA decreased from 38 to 24 nm at pH 8, 40 to 30 nm at pH 9 as well as from 48 to 32 nm at pH 10. The same trend of decrease in the crystalline size was observed when the chitosan concentration increased from 0.0 to 0.3 g. The results revealed that the crystalline size, pore size, and surface area of the synthesized HA can be controlled by adjusting the chitosan weight ratio in the initially prepared samples. Mesopores in HA were observed for the samples synthesized at different pH values, by removing the organic template. Furthermore, the pore size of the prepared chitosan/nHA samples was found to be 13–38 nm, which seems to be suitable for cell attachment and slow-release drug delivery, especially in treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Sherif, Green synthesis of hydroxyapatite nanoparticles with controlled morphologies and surface properties toward biomedical application. Inorg. Organomet. Polym. 30, 899–906 (2020)

    Google Scholar 

  2. V.K. Mishra, B.N. Bhattacharjee, D. Kumar, S.B. Rai, O. Parksh, Effect of chelating agent at different pH on spectroscopic and structural properties of microwave derived hydroxyapatite nanoparticles: a bone mimetic material. NJC 40, 5432–5441 (2016)

    CAS  Google Scholar 

  3. W. Suchanek, M. Yoshimura, M. Kakihana, M. Yoshimur, Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whishers. Biomaterials 17, 1715–1723 (1996)

    CAS  PubMed  Google Scholar 

  4. S.R. Radin, P. Ducheyne, Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. Biomed. Mater. Res. 28, 1303–1309 (1994)

    CAS  Google Scholar 

  5. J. Kamieniak, P.J. Kelly, C.E. Banks, A.M. Doyle, Mechanical, pH and thermal stability of mesoporous hydroxyapatite. Inorg. Organomet. Polym. 28, 84–91 (2018)

    CAS  Google Scholar 

  6. J.C. Elliot, Structure and Chemistry of the Apatites and Other Calcium Ortophosphates (Elsevier, Amsterdam, 1994)

    Google Scholar 

  7. S. Aryal, K.C.R. Bahader, N. Dharmaraj, K.W. Kim, H.Y. Kim, Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nano-matrix. Scr. Mater. 54, 131–135 (2006)

    CAS  Google Scholar 

  8. P.N. Kumta, C. Sfeir, D.H. Lee, D. Olton, D. Choi, Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater. 1, 65–83 (2005)

    PubMed  Google Scholar 

  9. R. Murugan, S. Ramakrishna, Crystallographic study of hydroxyapatite bioceramics derived from various sources. Cryst. Growth Des. 5, 111–112 (2005)

    CAS  Google Scholar 

  10. W.P.S.L. Wijesinghe, M.M.M.G.P.G. Mantilaka, T.N. Peiris, R.M.G. Rajapakse, K.U. Wijayantha, H.M.T.G.A. Pitawala et al., Prearation and characterization of mesoporous hydroxyapatite with non-cytotoxicity and heavy metal adsorption capacity. New J. Chem. 42, 10271–10278 (2018)

    CAS  Google Scholar 

  11. K.L. Lin, Y.L. Zhou, Y. Zhou, H.Y. Qu, F. Chen, Y.J. Zhu, J. Chang, Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements: surfactant-free hydrothermal synthesis, enhanced degradation and drug release. Mater. Chem. 21, 16558–16565 (2011)

    CAS  Google Scholar 

  12. L. Gu, X. He, Z. Wu, Mesoporous Hydroxyapatite: prepaeation, drug adsorption, and release properties. Mater. Chem. Phys. 148, 153–158 (2014)

    CAS  Google Scholar 

  13. C.S.A. Soriano, A.P.V. Colombo, R.M. Sousa, C.M. Silva-Boghossian, J.M. Granjeiro, G.G. Alves, A.M. Rossi, M.H.M. Rocha-Leao, Adsorption of chlorhexidine on synthesis hydroxyapatite and in vitro biological activity. Colloids Surf. B 87, 310–318 (2011)

    Google Scholar 

  14. Y.P. Guo, Y.B. Yao, Y.J. Guo, C.Q. Ning, Hydrothermal fabrication of mesoporous carbonated hydroxyapatite microspheres for a drug delivery system. Microporous Mesoporous Mater. 155, 245–251 (2012)

    CAS  Google Scholar 

  15. S.R. Bhattarai, S. Aryal, K.C.R. Bahardur, N. Bhattarai, P.H. Hwang, H.K. Yi, H.K. Kim, Carbon nanotube- hydroxyapatite nanocomposite for DNA complexation. Mater. Sci. Eng. C 28(2008), 64–69 (2008)

    CAS  Google Scholar 

  16. S.K. Swain, D. Sarkar, Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Appl. Surf. Sci. 286, 99–103 (2013)

    CAS  Google Scholar 

  17. H. Fu, M.N. Rahaman, D.E. Day, R. Brown, Hollow hydroxyapatite microspheres as a device for controlled delivery of proteins. Mater. Sci. 22, 579–591 (2011)

    CAS  Google Scholar 

  18. K. Tomoda, H. Ariizumi, T. Nakaji, K. Makino, Hydroxyapatite particles as drug carriers for proteins. Colloids Surf. B 76, 226–235 (2010)

    CAS  Google Scholar 

  19. F. Ye, H. Guo, H. Zhang, X. He, Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater. 6, 2212–2218 (2010)

    CAS  PubMed  Google Scholar 

  20. H. Zhou, M. Yang, S. Hou, L. Deng, Mesoporous hydroxyapatite nanoparticles hydrothermally synthesized in aqueous solution with hexametaphosphate and tea polyphenols. Mater. Sci. Eng. C 71, 439–445 (2017)

    CAS  Google Scholar 

  21. J.A. Lett, M. Sundareswari, K. Ravichandran, M.B. Latha, S. Sagadevan, M.R. Johan, B, Tailoring the morphological features of sol-gel synthesized mesoporous hydroxyapatite using fatty acids as an organic modifier. RSC Adv. 9, 6228–6240 (2019)

    CAS  Google Scholar 

  22. V.K. Mishra, B.N. Bhattacharjee, O. Parkash, D. Kumar, S.B. Rai, Mg- doped hydroxyapatite nanoplates for biomedical applications: a surfactant assisted microwave synthesis and spectroscopic investigations. Alloys Compd. 614, 283–288 (2014)

    CAS  Google Scholar 

  23. H. Zhang, S. Li, Y. Yan, Dissolution behavior of hydroxyapatite powder in hydrotermal solution. Ceram. Int. 27, 451–454 (2001)

    Google Scholar 

  24. L.B. Kong, J. Ma, F. Boey, Nanosized hydroxyapatite powders derived from coprecipitation process. Mater. Sci. 37, 1131–1134 (2002)

    CAS  Google Scholar 

  25. Y. Feng, H. Yin, D. Guo, A. Wang, L. Shen, M. Meng, Selective oxidation of 1,2-propanediol to lactic acid catalyzed by hydroxyapatite nanorod-supported Au/Pd bimetallic nanoparticles under atmospheric pressure. J. Catal. 5, 106918–106929 (2015)

    CAS  Google Scholar 

  26. H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, Hydroxyapatite synthesized by a simplified hydrotermal method. Ceram. Int. 23, 19–25 (1997)

    Google Scholar 

  27. J.S. Cho, S.H. Rhee, Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol. Eur. Ceram. Soc. 33, 233–241 (2013)

    CAS  Google Scholar 

  28. C.W. Chen, R.E. Riman, K.S. TenHuisem, K. Brown, Mechanochemical-hydrothermal synthesis of hydroxy apatite from nonionic surfactant emulsion precursors. Cryst. Growth 270, 615–623 (2004)

    CAS  Google Scholar 

  29. M. Toriyama, A. Ravaglioli, A. Krajewski, G. Celotti, A. Piancastelli, Synthesis of hydroxy-apatite-based by mechano-chemical method and their sintering. Eur. Ceram. Soc. 16, 429–436 (1996)

    CAS  Google Scholar 

  30. A.C. Tas, Combustion synthesis of calcium phosphate bioceramic powders. Eur. Ceram. Soc. 20, 2389–2394 (2000)

    CAS  Google Scholar 

  31. V.K. Mishra, S.B. Rai, B.P. Asthana, O. Parkash, D. Kumar, Effect of annealing on nanoparticles of hydroxyapatite synthesized via microwave irradiation: structural and spectroscopic studies. Ceram. Int. 40, 11319–11328 (2014)

    CAS  Google Scholar 

  32. V.K. Mishra, S.K. Srivastava, B.P. Asthana, D. Kumar, Structural and sepectroscopic studies of hydroxyapatite nanorods formed via microwave-assisted synthesis route. Am. Ceram. Soc. 95, 2709–2715 (2012)

    CAS  Google Scholar 

  33. J. Liu, K. Li, H. Wang, M. Zhu, H. Yan, Rapid formation of hydroxyapatite nanostructures nanostructures by microwave irradiation. Chem. Phys. 396, 429–432 (2004)

    CAS  Google Scholar 

  34. A. Lak, M. Mazloumi, M.S. Mohajerani, S. Zanganeh, M.R. Shayegh, A. Kajbafvala, H. Arami, S.K. Sadrnezhaad, Rapid formation of mono-dispersed hydroxyapatite nanorods with narrow-size distribution via microwave irradiation. Am. Ceram. 91, 3580–3584 (2008)

    CAS  Google Scholar 

  35. N.Y. Hsu, Y.W. Lin, Microwave-assisted synthesis of bovine serum albumin- gold nanoclusters and their fluorescence-quenched sensing of Hg2+ ions. New J. Chem. 40, 1155–1161 (2015)

    Google Scholar 

  36. P. Luo, T.G. Nieh, Synthesis of ultrafine hydroxyapatite particles by a spray dry method. Mater. Sci. Eng. C 3, 75–78 (1995)

    Google Scholar 

  37. A. Siddharthan, S.K. Seshadri, T.S.S. Kumar, Influence of microwave powder on nanosized hydroxyapatite particles. Scr. Mater. 55, 175–178 (2006)

    CAS  Google Scholar 

  38. M. Meskin Fam, M.S. Sadjadi, H. Jazdarred, Biomimetic preparation of nano hydroxyapatite in gelatin-starch matrix. Mater. Metall. Eng. 52, 395–398 (2011)

    Google Scholar 

  39. R. Sahba, M.S. Sadjadi, A.A. Sajjadi, N. Farhadyar, Preparation and characterization of friendly colloidal Hydroxyapatite based on natural Milk s casein. Nano Dimens. 9, 238–245 (2018)

    CAS  Google Scholar 

  40. V. Rodrlgues-Lugo, T.V.K. Karthik, D. Mendoza-Anaya, E. Rubio-Rosas, L.S. Villasenor Ceron, M.I. Reyes-Valderrama, E. Salinas-Rodrlguez, Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties. R. Soc. Open Sci. 5, 180962 (2018)

    Google Scholar 

  41. Y. Wang, J.D. Chen, K. Wei, S.H. Zhang, X. Wang, Surfactant-assisted synthesis of hydroxyapatite particles. Mater. Lett. 60, 3227–3231 (2006)

    CAS  Google Scholar 

  42. A. Sinha, A. Guha, Biomimetic patterning of polymer hydrogels with hydroxyapatite nanoparticles. Mater. Sci. Eng. C 29, 1330–1333 (2008)

    Google Scholar 

  43. A.J. Nathanael, D. Mangalaraj, P.C. Chen, P. Nagamony, Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene. Nanopart. Res. 13, 1841–1853 (2011)

    Google Scholar 

  44. A. Slosarczyk, Z. Paszkiewicz, C. Paluszkiewicz, FT-IR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Mol. Struct. 744, 657–661 (2005)

    Google Scholar 

  45. H.W. Kim, J.C. Knowles, H.E. Kim, Gelatin/hydroxyapatite nanocomposite scaffolds for bone repair. Biomed. Mater. 72, 136–145 (2005)

    Google Scholar 

  46. S. Raynaud, E. Champion, D. Bernache-Assollant, Calcium phosphate apatite with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal of powders. Biomaterials 23, 1065–1072 (2002)

    CAS  PubMed  Google Scholar 

  47. S. Raynaud, E. Champion, D. Bernache-Assollant, Calcium phosphate apatite with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials 23, 1073–1080 (2002)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirabdullah Seyed Sadjadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Absalan, F., Sadjadi, M.S., Farhadyar, N. et al. Synthesis of Mesoporous Hydroxyapatite with Controlled Pore Size Using the Chitosan as an Organic Modifier: Investigating the Effect of the Weight Ratio and pH Value of Chitosan on the Structural and Morphological Properties. J Inorg Organomet Polym 30, 3562–3573 (2020). https://doi.org/10.1007/s10904-020-01623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01623-5

Keywords

Navigation