Skip to main content
Log in

Synthesis of Bi2WO6/Bi2MoO6 Heterostructured Nanosheet and Activating Peroxymonosulfate to Enhance Photocatalytic Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Bi2WO6/Bi2MoO6 heterostructured photocatalys had been synthesized by a refluxing method. And the photocatalytic activity of Bi2WO6/Bi2MoO6 heterostructured photocatalysts was better than Bi2WO6. The enhancement in photocatalysis activity belonged to the match of energy level between the Bi2MoO6 and Bi2WO6. In order to further enhance the photocatalytic activity of Bi2WO6/Bi2MoO6, Bi2WO6/Bi2MoO6 was used to activate peroxymonosulfate to photodegradate methylene blue. The mechanism of activating peroxymonosulfate was proved by radical quenching experiment which revealed that sulfate radicals governed the removal of methylene blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.L. Min, K. Zhang, Y.C. Chen, Y.G. Zhang, W. Zhao, Synthesis of nanostructured ZnO/Bi2WO6 heterojunction for photocatalysis application. Sep. Purif. Technol. 92, 115–120 (2012)

    CAS  Google Scholar 

  2. L. Ge, J. Liu, Efficient visible light-induced photocatalytic degradation of methyl orange by QDs sensitized CdS-Bi2WO6. Appl. Catal. B 105, 289–297 (2011)

    CAS  Google Scholar 

  3. Q.C. Xu, D.V. Wellia, Y.H. Ng, R. Amal, T.T.Y. Tan, Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J. Phys. Chem. C 115, 7419–7428 (2011)

    CAS  Google Scholar 

  4. M. Shang, W.Z. Wang, L. Zhang, S.M. Sun, L. Wang, L. Zhou, 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synthesis and enhanced visible photocatalytic degradation performances. J. Phys. Chem. C 113, 14727–14731 (2009)

    CAS  Google Scholar 

  5. G. Colón, S. Murcia, M.C. López, J.A. Hidalgo, Navío, Sunlight highly photoactive Bi2WO6–TiO2 heterostructures for rhodamine B degradation. Chem. Commun. 46, 4809–4811 (2010)

    Google Scholar 

  6. Y. Wang, X. Bai, C. Pan, J. He, Y. Zhu, Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J. Mater. Chem. 22, 11568–11573 (2012)

    CAS  Google Scholar 

  7. H. Huang, S. Wang, N. Tian, Y. Zhang, A one-step hydrothermal preparation strategy for layered BiIO4/Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. RSC Adv. 4, 5561–5567 (2014)

    CAS  Google Scholar 

  8. C. Zhang, Y. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 17, 3537–3545 (2005)

    CAS  Google Scholar 

  9. F.J. Zhang, S.F. Zhu, F.Z. Xie, J. Zhang, Z.D. Meng, Plate-on-plate structured Bi2MoO6/Bi2WO6 heterojunction with high-efficiently gradient charge transfer for decolorization of MB. Sep. Purif. Technol. 113, 1–8 (2013)

    Google Scholar 

  10. J. Tian, Z. Zhu, B. Liu, Novel Bi2MoO6/Bi2WO6/MWCNTs photocatalyst with enhanced photocatalytic activity towards degradation of RB-19 under visible light irradiation. Colloids Surf. A 581, 123798 (2019)

    CAS  Google Scholar 

  11. J. Jia, X. Du, E. Liu, J. Wan, C. Pan, Y. Ma, X. Hu, J. Fan, Highly efficient and stable Au/Bi2MoO6/Bi2WO6 heterostructure with enhanced photocatalytic activity for NO gas removal under visible light irradiation. J. Phys. D 50, 145103 (2017)

    Google Scholar 

  12. P. Yan, D. Li, X. Ma, J. Xue, Y. Zhang, M. Liu, Hydrothermal synthesis of Bi2WO6 with a new tungsten source and enhanced photocatalytic activity of Bi2WO6 hybridized with C3N4. Photochem. Photobiol. Sci. 17, 1084–1090 (2018)

    CAS  PubMed  Google Scholar 

  13. D. Li, J. Xue, X. Bai, Synthesis of ZnWO4/CdWO4 core–shell structured nanorods formed by an oriented attachment mechanism with enhanced photocatalytic performances. CrystEngComm 18, 309–315 (2016)

    CAS  Google Scholar 

  14. Y.L. Min, K. Zhang, Y.C. Chen, Y.G. Zhang, Synthesis of novel visible light responding vanadate/TiO2 heterostructure photocatalysts for application of organic pollutants. Chem. Eng. J. 175, 76–83 (2011)

    CAS  Google Scholar 

  15. L. Kong, Z. Jiang, T.C. Xiao, L.F. Lu, M.O. Jonesa, P.P. Edwards, Exceptional visible-light-driven photocatalytic activity over BiOBr–ZnFe2O4 heterojunctions. Chem. Commun. 47, 5512–5514 (2011)

    CAS  Google Scholar 

  16. S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Efficient photochemical water splitting by a chemically modified n-TiO2. Science 27, 2243–2245 (2002)

    Google Scholar 

  17. K.H. Ji, D.M. Jang, Y.J. Cho, Y. Myung, H.S. Kim, Y. Kim, J. Park, Comparative photocatalytic ability of nanocrystal-carbon nanotube and -TiO2 nanocrystal hybrid nanostructures. J. Phys. Chem. C 113, 19966–19972 (2009)

    CAS  Google Scholar 

  18. C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 22, 1518–1524 (2012)

    CAS  Google Scholar 

  19. L. Zhang, H. Cheng, R. Zong, Y. Zhu, Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J. Phys. Chem. C 113, 2368–2374 (2009)

    Google Scholar 

  20. S. Zhu, T. Xu, H. Fu, J. Zhao, Y. Zhu, Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ. Sci. Technol. 41, 6234–6239 (2007)

    CAS  PubMed  Google Scholar 

  21. Q. Tian, J. Zhuang, J. Wang, L. Xie, P. Liu, Novel photocatalyst, Bi2Sn2O7, for photooxidation of As(III) under visible-light irradiation. Appl. Catal. A 425–426, 74–78 (2012)

    Google Scholar 

  22. H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang, Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem. Int. Ed. 56, 11860–11864 (2017)

    CAS  Google Scholar 

  23. H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3. ACS Catal. 5, 4094–4103 (2015)

    CAS  Google Scholar 

  24. H. Huang, Y. He, X. Li, M. Li, C. Zeng, F. Dong, X. Du, T. Zhang, Y. Zhang, Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst: strong intrinsic polarity, rational band structure and {{001}} active facets co-beneficial for robust photooxidation capability. J. Mater. Chem. A 3, 24547–24556 (2015)

    CAS  Google Scholar 

  25. T. Mohammad, H. Morrison, Simultaneous photoconjugation of methylene blue and cis-Rh(phen)2Cl2 to DNA via a synergistic effect. Photochem. Photobiol. 71, 369–381 (2000)

    CAS  PubMed  Google Scholar 

  26. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobiol. A 140, 163–172 (2001)

    CAS  Google Scholar 

  27. C. Han, L. Ge, C. Chen, Y. Li, X. Xiao, Y. Zhang, L. Guo, Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange. Appl. Catal. B 147, 546–553 (2014)

    CAS  Google Scholar 

  28. L. Ge, C. Han, X. Xiao, L. Guo, Synthesis and characterization of composite visible light active photocatalysts MoS2–g-C3N4 with enhanced hydrogen evolution activity. Int. J. Hydrogen Energy 38, 6960–6969 (2013)

    CAS  Google Scholar 

  29. L. Ge, C. Han, J. Liu, In situ synthesis and enhanced visible light photocatalytic activities of novel PANI–g-C3N4 composite photocatalysts. J. Mater. Chem. 22, 11843–11850 (2012)

    CAS  Google Scholar 

  30. R.J. Dillon, J.B. Joo, F. Zaera, Y. Yin, C.J. Bardeen, Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core–shell nanostructures. Phys. Chem. Chem. Phys. 15, 1488–1496 (2013)

    CAS  PubMed  Google Scholar 

  31. Z. Jiang, K. Qian, C. Zhu, H. Sun, W. Wan, J. Xie, H. Li, P.K. Wong, S. Yuan, Carbon nitride coupled with CdS-TiO2 nanodots as 2D/0D ternary composite with enhanced photocatalytic H2 evolution: a novel efficient three-level electron transfer process. Appl. Catal. B 210, 194–204 (2017)

    CAS  Google Scholar 

  32. D. Li, R. Shi, C. Pan, Y. Zhu, H. Zhao, Influence of ZnWO4 nanorod aspect ratio on the photocatalytic activity. CrystEngComm 13, 4695–4700 (2011)

    CAS  Google Scholar 

  33. H. Huang, L. Liu, Y. Zhang, N. Tian, One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation. J. Alloys Compd. 619, 807–811 (2015)

    CAS  Google Scholar 

  34. W.S. Chen, C.P. Huang, Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere 125, 175–181 (2015)

    CAS  PubMed  Google Scholar 

  35. J. Zou, J. Ma, L.W. Chen, X.C. Li, Y.H. Guan, P.C. Xie, C. Pan, Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. Environ. Sci. Technol. 47, 11685–11691 (2013)

    CAS  PubMed  Google Scholar 

  36. X.X. He, A.A. de la Cruz, D.D. Dionysiou, Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. J. Photochem. Photobiol. A 251, 160–166 (2013)

    CAS  Google Scholar 

  37. M.G. Antoniou, A.A. de la Cruz, D.D. Dionysiou, Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e transfer mechanisms. Appl. Catal. B: Environ. 96, 290–298 (2010)

    CAS  Google Scholar 

  38. X. Zhou, Q.L. Wang, G.M. Jiang, P. Liu, Z.G. Yuan, A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate. Bioresour. Technol. 185, 416–420 (2015)

    CAS  PubMed  Google Scholar 

  39. H. Zhong, M.L. Brusseau, Y.K. Wang, N. Yan, L. Quig, G.R. Johnson, In-situ activation of persulfate by iron filings and degradation of 1,4-dioxane. Water Res. 83, 104–111 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. O.S. Furman, A.L. Teel, R.J. Watts, Mechanism of base activation of persulfate. Environ. Sci. Technol. 44, 6423–6428 (2010)

    CAS  PubMed  Google Scholar 

  41. M.M. Ahmed, S. Barbati, P. Doumenq, S. Chiron, Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination. Chem. Eng. J. 197, 440–447 (2012)

    Google Scholar 

  42. M.G. Antoniou, A.A. de la Cruz, D.D. Dionysiou, Intermediates and reaction pathways from the degradation of microcystin-LR with sulfate radicals. Environ. Sci. Technol. 44, 7238–7244 (2010)

    CAS  PubMed  Google Scholar 

  43. J. Kang, H. Zhang, X. Duan, H. Sun, X. Tan, S. Liu, S. Wang, Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants. Chem. Eng. J. 362, 251–261 (2019)

    CAS  Google Scholar 

  44. C. Brandt, R. Vaneldik, Transition metal-catalyzed oxidation of sulfur(IV) oxides. atmospheric-relevant processes and mechanisms. Chem. Rev. 95, 119–190 (1995)

    CAS  Google Scholar 

  45. X.L. Wu, X.G. Gu, S.G. Lu, Z.F. Qiu, Q. Sui, X.K. Zang, Z.W. Miao, M.H. Xu, Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine. Sep. Purif. Technol. 147, 186–193 (2015)

    CAS  Google Scholar 

  46. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, W. Tsang, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988)

    CAS  Google Scholar 

  47. Y. Liu, H. Guo, Y. Zhang, W. Tang, X. Cheng, H. Liu, Activation of peroxymonosulfate by BiVO4 under visible light for degradation of Rhodamine B. Chem. Phys. Lett. 653, 101–107 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Xi’an University of Architecture and Technology Science Foundation (ZR18072), National Natural Science Foundation of China (21301135, 21607034 and 51874227), Beijing Natural Science Foundation (8192011), Science and Technology General Project of Beijing Municipal Education Commission (KM202010016006), Shaanxi Natural Science Foundation Project (2017ZDJC-25) and Industrialization cultivation project of Shaanxi Provincial Department of Education (18JC016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Yan, P., Zhao, Q. et al. Synthesis of Bi2WO6/Bi2MoO6 Heterostructured Nanosheet and Activating Peroxymonosulfate to Enhance Photocatalytic Activity. J Inorg Organomet Polym 30, 5100–5107 (2020). https://doi.org/10.1007/s10904-020-01607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01607-5

Keywords

Navigation