Skip to main content
Log in

Fabrication of Ag NPs/Zn-MOF Nanocomposites and Their Application as Antibacterial Agents

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Three new nanocomposites consisting of Zn(II) metal–organic framework (Zn-MOF) and Ag nanoparticles (Ag NPs), designated as Ag NPs/Zn-MOFs 13, based on the used doses of AgNO3, were fabricated. FT-IR (Fourier-transform infrared), PXRD (powder X-ray diffraction), SEM (scanning electron microscope), EDS (energy-dispersive X-ray spectroscopy) mapping, and TEM (transmission electron microscope) techniques were used for characterization of the prepared compounds. The obtained results have shown that the Ag NPs were successfully loaded on the Zn-MOF template. The spherical morphology of Ag NPs with diameter of 30–60 nm was confirmed through TEM analysis. The antibacterial activity of the synthesized compounds was then assessed against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli, using disc diffusion method. Among the studied composites, the one with higher dose of used AgNO3, i.e. Ag NPs/Zn-MOF 1, had a broad-spectrum of antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Li, J.G. Ma, P. Cheng, Integration of metal nanoparticles into metal–organic frameworks for composite catalysts: design and synthetic strategy. Small 15, 1804849 (2019)

    Article  Google Scholar 

  2. M. Azharuddin, G.H. Zhu, D. Das, E. Ozgur, L. Uzun, A.P. Turner, H.K. Patra, A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun. 55, 6964–6996 (2019)

    Article  CAS  Google Scholar 

  3. P. Velmurugan, S.-M. Lee, M. Iydroose, K.-J. Lee, B.-T. Oh, Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl. Microbiol. Biotechnol. 97, 361–368 (2013)

    Article  CAS  Google Scholar 

  4. D. Liu, J. Pan, J. Tang, W. Liu, S. Bai, R. Luo, Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids 124, 36–43 (2019)

    Article  CAS  Google Scholar 

  5. S. Hassanpour, M. Hasanzadeh, A. Saadati, N. Shadjou, J. Soleymani, A. Jouyban, A novel paper based immunoassay of breast cancer specific carbohydrate (CA 15.3) using silver nanoparticles-reduced graphene oxide nano-ink technology: a new platform to construction of microfluidic paper-based analytical devices (µPADs) towards biomedical analysis. Microchem. J. 146, 345–358 (2019)

    Article  CAS  Google Scholar 

  6. V. Ambrogi, D. Pietrella, A. Donnadio, L. Latterini, A. Di Michele, I. Luffarelli, M. Ricci, Biocompatible alginate silica supported silver nanoparticles composite films for wound dressing with antibiofilm activity. Mater. Sci. Eng. C 112, 110863 (2020)

    Article  CAS  Google Scholar 

  7. S. Mortazavi-Derazkola, M.A. Ebrahimzadeh, O. Amiri, H.R. Goli, A. Rafiei, M. Kardan, M. Salavati-Niasari, Facile green synthesis and characterization of Crataegus microphylla extract-capped silver nanoparticles (CME@Ag-NPs) and its potential antibacterial and anticancer activities against AGS and MCF-7 human cancer cells. J. Alloy. Compd. 820, 153186 (2020)

    Article  CAS  Google Scholar 

  8. B. Chen, Y. Jiang, M. Zhao, W. Wang, Z. Chu, R. Huo, F. Hu, W. Zhou, T. He, H. Qian, Ag nanoparticles decorated hybrid microspheres for superior antibacterial properties. Mater. Lett. 262, 127057 (2020)

    Article  CAS  Google Scholar 

  9. A. Phuruangrat, S. Siri, P. Wadbua, S. Thongtem, T. Thongtem, Microwave-assisted synthesis, photocatalysis and antibacterial activity of Ag nanoparticles supported on ZnO flowers. J. Phys. Chem. Solids 126, 170–177 (2019)

    Article  CAS  Google Scholar 

  10. H. Veisi, S. Kazemi, P. Mohammadi, P. Safarimehr, S. Hemmati, Catalytic reduction of 4-nitrophenol over Ag nanoparticles immobilized on Stachys lavandulifolia extract-modified multi walled carbon nanotubes. Polyhedron 157, 232–240 (2019)

    Article  CAS  Google Scholar 

  11. G. Ipek Yucelen, R.E. Connell, J.R. Terbush, D.J. Westenberg, F. Dogan, Synthesis and immobilization of silver nanoparticles on aluminosilicate nanotubes and their antibacterial properties. Appl. Nanosci. 6, 607–614 (2016)

    Article  CAS  Google Scholar 

  12. S.S. Gasaymeh, N.N. ALmansoori, Novel formation mechanism of Ag/PANI/PVP core-shell nanocomposites. Result. Phys. 16, 102882 (2020)

    Article  Google Scholar 

  13. V.V. Karve, D.T. Sun, O. Trukhina, S. Yang, E. Oveisi, J. Luterbacher, W.L. Queen, Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite. Green Chem. (2020). https://doi.org/10.1039/C9GC03140E

    Article  Google Scholar 

  14. X. Li, Z. Zhang, W. Xiao, S. Deng, C. Chen, N. Zhang, Mechanochemistry-assisted encapsulation of metal nanoparticles in MOF matrices via a sacrificial strategy. J. Mater. Chem. A 7, 14504–14509 (2019)

    CAS  Google Scholar 

  15. Y. Han, H. Xu, Y. Su, Z. Xu, K. Wang, W. Wang, Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 370, 70–78 (2019)

    Article  CAS  Google Scholar 

  16. P.V. Baptista, M.P. McCusker, A. Carvalho, D.A. Ferreira, N.M. Mohan, M. Martins, A.R. Fernandes, Nano-strategies to fight multidrug resistant bacteria-“a battle of the titans". Front. Microbiol. 9, 1441 (2018)

    Article  Google Scholar 

  17. G. Wyszogrodzka, B. Marszalek, B. Gil, P. Dorozynski, Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov Today 21, 1009–1018 (2016)

    Article  CAS  Google Scholar 

  18. N. Bhardwaj, S.K. Pandey, J. Mehta, S.K. Bhardwaj, K.-H. Kim, A. Deep, Bioactive nano-metal–organic frameworks as antimicrobials against gram-positive and gram-negative bacteria. Toxicol. Res. 7, 931–941 (2018)

    Article  CAS  Google Scholar 

  19. S.G. Surya, S. Bhanoth, S.M. Majhi, Y.D. More, V.M. Teja, K.N. Chappanda, A silver nanoparticle-anchored UiO-66(Zr) metal–organic framework (MOF)-based capacitive H2S gas sensor. CrystEngComm 21, 7303–7312 (2019)

    Article  CAS  Google Scholar 

  20. R. Mahugo, A. Mayoral, M. Sánchez-Sánchez, I. Diaz, Observation of Ag nanoparticles in/on Ag@MIL-100(Fe) prepared through different procedures. Front. Chem. 7, 686 (2019)

    Article  CAS  Google Scholar 

  21. D.M. Ciurtin, Y.-B. Dong, M.D. Smith, T. Barclay, Z. Loy, Two versatile N,Nʹ-bipyridine-type ligands for preparing organic–inorganic coordination polymers: new cobalt- and nickel-containing framework materials. Inorg. Chem. 40, 2825–2834 (2001)

    Article  CAS  Google Scholar 

  22. V. Safarifard, S. Beheshti, A. Morsali, An interpenetrating amine-functionalized metal–organic framework as an efficient and reusable catalyst for the selective synthesis of tetrahydro-chromenes. CrystEngComm 17, 1680–1685 (2015)

    Article  CAS  Google Scholar 

  23. A. Mirzaie, T. Musabeygi, A. Afzalinia, Sonochemical synthesis of magnetic responsive Fe3O4@TMU-17-NH2 composite as sorbent for highly efficient ultrasonic-assisted denitrogenation of fossil fuel. Ultrason. Sonochem. 38, 664–671 (2017)

    Article  CAS  Google Scholar 

  24. M. Yadollahi, H. Hamadi, V. Nobakht, CoFe2O4/TMU-17‐NH2 as a hybrid magnetic nanocomposite catalyst for multicomponent synthesis of dihydropyrimidines. Appl. Organomet. Chem. 33, e4629 (2019)

    Article  Google Scholar 

  25. M. Govarthanan, T. Selvankumar, K. Manoharan, R. Rathika, K. Shanthi, K.J. Lee, M. Cho, S. Kamala-Kannan, B.T. Oh, Biosynthesis and characterization of silver nanoparticles using panchakavya, an Indian traditional farming formulating agent. Int. J. Nanomed. 9, 1593–1599 (2014)

    Article  Google Scholar 

  26. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9, 217–227 (2016)

    Article  CAS  Google Scholar 

  27. Y. Cai, X. Piao, W. Gao, Z. Zhang, E. Nie, Z. Sun, Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Adv. 7, 34041–34048 (2017)

    Article  CAS  Google Scholar 

  28. C. Cermelli, A. Fabio, G. Fabio, P. Quaglio, Effect of eucalyptus essential oil on respiratory bacteria and viruses. Curr. Microbiol. 56, 89–92 (2008)

    Article  CAS  Google Scholar 

  29. M.J. Hajipour, K.M. Fromm, A. Akbar Ashkarran, D.J. de Aberasturi, I.R. Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support (Grant No.: SCU.SC.98.20911) from the Shahid Chamran University of Ahvaz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Ansari-Asl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacourbaravi, R., Ansari-Asl, Z., Kooti, M. et al. Fabrication of Ag NPs/Zn-MOF Nanocomposites and Their Application as Antibacterial Agents. J Inorg Organomet Polym 30, 4615–4621 (2020). https://doi.org/10.1007/s10904-020-01601-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01601-x

Keywords

Navigation