Skip to main content
Log in

A Novel PHEMA-Based Bismuth Oxide Composite with High Photocatalytic Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The Stöber method was used to synthesize silicon sphere carriers with uniform size. The surface of the silicon sphere carrier was treated with 3-aminopropyltrimethoxysilane and 2-bromopropionyl bromide as atom transfer radical polymerization (ATRP) initiator and grafted with polyhydroxyethyl methacrylate (PHEMA) by ATRP. Bismuth nitrate was used as bismuth source to form polymer-metal complex with PHEMA. Sodium borohydride was used to reduce the bismuth ions in the composite material to metallic bismuth, and the metal bismuth on the surface of the composite material was oxidized in air atmosphere at 450 °C to obtain the inorganic–organic bismuth oxide composite. The morphology, elemental composition and photocatalytic degradation efficiency of Rhodamine B by bismuth oxide composite were characterized by various measurements. The TG and TEM results show that the composite material has good thermal stability, and Bi2O3 has very good dispersibility and stability in the prepared Bi2O3 composite. When the pH value is 4 with a catalyst dosage of 1.2 g/L, the degradation efficiency of Rhodamine B can reach 99.3% after 4 h of light irradiation, which is 24.2% higher than that of pure bismuth oxide. After 5 cycles, Bi2O3 composites still have a strong degradation effect with a degradation rate of 90.1% for Rhodamine B dye solution, which illuminates that the prepared Bi2O3 composite has good cyclic degradation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X.Y. Li, H. Wu, Y.Y. Dan, L.Z. Chen, Preparation and photodegradation of rhodamine B by polyaniline-coated titanium dioxide nanowire. J. Jiangsu Univ. Sci. Technol. 33(4), 90–94 (2019)

    CAS  Google Scholar 

  2. J.K. Du, J.G. Bao, X.Y. Fu, C.H. Lu, S.H. Kim, Facile preparation of S/Fe composites as an effective peroxydisulfate activator for RhB degradation. Sep. Purif. Technol. 163, 145–152 (2016)

    Article  CAS  Google Scholar 

  3. C.X. Zhao, H. Tang, W. Liu, C.H. Han, X.F. Yang, Q.Q. Liu, J.S. Xu, Constructing 0D FeP nanodots/2D g-C3N4 nanosheets heterojunction for highly improved photocatalytic hydrogen evolution. Chem Cat Chem 11(24), 6310–6315 (2019)

    CAS  Google Scholar 

  4. J.H. Jiang, H.J. Chen, X.D. Lou, G.X. Xi, Enhancement of degradation of rhodamine B in aqueous solution by ultrasound/Fe2+ process. Technol. Equip. Environ. Pollut. Control 08, 99–103 (2006)

    Google Scholar 

  5. Y.S. Zhang, Fe2O3/MCM-41 adsorption removal and degradation of RhB via catalyzing H2O2/PMS (Qingdao University of Science and Technology, Qingdao, 2016)

    Google Scholar 

  6. R.J. Nie, X.X. Zhou, B.B. Zhao, M.M. Gao, C.F. Liu, Y.H. Sun, C.D. Si, Microwave-assisted active carbon degradation of RhB. Shandong Chem. Ind. 44(14), 173–174 (2015)

    CAS  Google Scholar 

  7. M.C. Li, Q. Huang, J.Q. Ma, Y.Z. Wen, Degradation of rhodamine B by 3,4-dihydroxyphenylacetic acid/Fe3+/H2O2. J. Zhejiang Univ. Technol. 47(05), 495–499 (2019)

    Google Scholar 

  8. J. Wu, K. Zhu, H. Xu, W. Yan, Electrochemical oxidation of rhodamine B by PbO2/Sb-SnO2/TiO2 nanotube arrays electrode. Chin. J. Catal. 40(06), 917–932 (2019)

    Article  CAS  Google Scholar 

  9. H. Tang, R. Wang, C.X. Zhao, Z.P. Chen, X.F. Yang, D. Bukhvalov, Z.X. Lin, Q.Q. Liu, Oxamide-modified g-C3N4 nanostructures: Tailoring surface topography for high-performance visible light photocatalysis. Chem. Eng. J. 374, 1064–1075 (2019)

    Article  CAS  Google Scholar 

  10. K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini, M. Malik, Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci. Rep. 6, 38064 (2016)

    Article  CAS  Google Scholar 

  11. D.Q. Huang, F. Ma, L.M. Yu, D.R. Wu, K. Wang, M.R. Yang, D. Papoulis, S. Komarneni, AgCl and BiOCl composited with NiFe-LDH for enhanced photo-degradation of Rhodamine B. Sep. Purif. Technol. 156, 789–794 (2015)

    Article  CAS  Google Scholar 

  12. H. Liu, X.N. Dong, X.C. Wang, C.C. Sun, J.Q. Li, Z.F. Zhu, A green and direct synthesis of graphene oxide encapsulated TiO2 core/shell structures with enhanced photoactivity. Chem. Eng. J. 230, 279–285 (2013)

    Article  CAS  Google Scholar 

  13. S.H. Fan, Y.M. Cui, Application of photocatalysis technology in wastewater treatment. Chem. Ind. 21(5), 345–348 (2002)

    CAS  Google Scholar 

  14. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    Article  CAS  Google Scholar 

  15. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl. Catal. A 359(1–2), 25–40 (2009)

    Article  CAS  Google Scholar 

  16. C.X. Zhao, Z.P. Chen, J.S. Xu, Q.Q. Liu, H. Xu, H. Tang, G.S. Li, Y. Jiang, F.Q. Qu, Z.X. Lin, X.F. Yang, Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Appl. Catal. B 256, 117867 (2019)

    Article  CAS  Google Scholar 

  17. C.M. Magdalane, K. Kaviyarasu, G.M.A. Priyadharsini, A.K.H. Bashir, N. Mayedwa, N. Matinise, A.B. Isaev, N.A. Al-Dhabi, M.V. Arasu, S. Arokiyaraj, J. Kennedy, M. Maaza, Improved photocatalytic decomposition of aqueous Rhodamine-B by solar light illuminated hierarchical yttria nanosphere decorated ceria nanorods. J. Mater. Res. Technol. 8(3), 2898–2909 (2019)

    Article  CAS  Google Scholar 

  18. C.M. Magdalane, K. Kaviyarasu, N. Matinise, N. Mayedwa, N. Mongwaketsi, D. Letsholathebe, G.T. Mola, N.A. Al-Dhabi, M.V. Arasu, M. Henini, J. Kennedy, M. Maaza, B. Jeyaraj, Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/Visible light induced removal of organic dye from urban wastewater. S. Afr. J. Chem. Eng. 26, 49–60 (2018)

    Google Scholar 

  19. K. Kaviyarasu, C.M. Magdalane, D. Jayakumar, Y. Samson, A.K.H. Bashir, M. Maaza, D. Letsholathebe, A.H. Mahmoud, J. Kennedy, High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. J. King Saud Univ. Sci. 32(2), 1516–1522 (2020)

    Article  Google Scholar 

  20. X.F. Yang, L. Tian, X.L. Zhao, H. Tang, Q.Q. Liu, G.S. Li, Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Appl. Catal. B 244, 240–249 (2019)

    Article  CAS  Google Scholar 

  21. J. Huang, Y. Li, X.H. Jia, H.J. Song, Preparation and tribological properties of core-shell Fe3O4@C microspheres. Tribol. Int. 129, 427–435 (2019)

    Article  CAS  Google Scholar 

  22. Z. Jiang, F. Yang, N. Luo, B.T. Chu, D. Sun, H. Shi, T. Xiao, P.P. Edwards, Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis. Chem. Commun. 47, 6372–6374 (2008)

    Article  Google Scholar 

  23. J.J. Dang, C.Z. Wang, L.J. Ye, Research progress of composite modification of bismuth oxyhalide photocatalyst. Appl. Chem. Ind. 46(08), 1573–1576 (2017)

    Google Scholar 

  24. L.S. Zhang, W. Wang, J. Yang, Z.G. Chen, W.Q. Zhang, L. Zhou, S.W. Liu, Sonochemical synthesis of nanocrystallite Bi2O3, as a visible light driven photocatalyst. Appl. Catal. A 308(7), 105–110 (2006)

    Article  CAS  Google Scholar 

  25. H.F. Cheng, B.B. Huang, J.B. Lu, Z.Y. Wang, B. Xu, X.Y. Qin, X.Y. Zhang, Y. Dai, Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs. Phys. Chem. Chem. Phys. 12(47), 15468–15475 (2010)

    Article  CAS  Google Scholar 

  26. G.H. Zhang, W. Wang, X.M. Gao, X.F. Yang, P.G. Zhao, Research progress on preparation of Bi2O3 photocatalyst and its photodegradation of organic pollutants in aqueous. Appl. Chem. Ind. 7(10), 2260–2263 (2018)

    Google Scholar 

  27. Y.T. Li, Z.F. Zhang, Y.Y. Zhang, X.G. Sun, J.M. Zhang, C.H. Wang, Z. Peng, H.Y. Si, Preparation of Ag doped Bi2O3 nanosheets with highly enhanced visible-light photocatalytic performances. Ceram. Int. 40(8), 13275–13280 (2014)

    Article  CAS  Google Scholar 

  28. Y. Wang, Y.Y. Wen, H.M. Ding, Y.K. Shan, Improved structural stability of titanium-doped β-Bi2O3 during visible-light activated photocatalytic processes. J. Mater. Sci. 45(5), 1385–1392 (2010)

    Article  CAS  Google Scholar 

  29. L.Z. Li, B. Yan, BiVO4/Bi2O3 submicrometer sphere composite: Microstructure and photocatalytic activity under visible-light irradiation. J. Alloy. Compd. 476(1), 624–628 (2009)

    Article  CAS  Google Scholar 

  30. L.F. Zhu, C. He, Y.L. Huang, Z.H. Chen, D.H. Xia, M.H. Su, Y. Xiong, S.Y. Li, D. Shu, Enhanced photocatalytic disinfection of E. coli 8099 using Ag/BiOI composite under visible light irradiation. Sep Purif Technol 91, 59–66 (2012)

    Article  CAS  Google Scholar 

  31. C. Chang, L.Y. Zhu, Y. Fu, X.L. Chu, Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol A under simulated solar light irradiation. Chem. Eng. J. 233, 305–314 (2013)

    Article  CAS  Google Scholar 

  32. A.H. Lee, Y.C. Wang, C.C. Chen, Composite photocatalyst, tetragonal lead bismuth oxyiodide/bismuth oxyiodide/graphitic carbon nitride: Synthesis, characterization, and photocatalytic activity. J. Colloid Interface Sci. 533, 319–332 (2019)

    Article  CAS  Google Scholar 

  33. J.F. Zhang, J.W. Fu, Z.L. Wang, B. Cheng, K. Dai, W.K. Ho, Direct Z-scheme porous g-C3N4/BiOI heterojunction for enhanced visible-light photocatalytic activity. J. Alloy. Compd. 766, 841–850 (2018)

    Article  CAS  Google Scholar 

  34. W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  35. W. Wang, B.H. Gu, L.Y. Liang, W.A. Hamilton, Fabrication of two- and three-dimensional silica nanocolloidal particle arrays. Phys. Chem. B 107, 3400–3404 (2003)

    Article  CAS  Google Scholar 

  36. L.H. Lu, R. Capek, A. Kornowski, N. Gaponik, A. Eychmuller, Selective fabrication of ordered bimetallic nanostructures with hierarchical porosity. Angew. Chem. Int. Ed. 44, 5997–6001 (2005)

    Article  CAS  Google Scholar 

  37. H.T. Li, Synthesis of Novel Functional Hybrid Materials Containing Polymer Metal Complexes by Atom Transfer Radical Polymerization (Jilin University, Jilin, 2005)

    Google Scholar 

  38. T. Grimaud, K. Matyjaszewski, Controlled/“living” radical polymerization of methyl methacrylate by atom transfer radical polymerization. Macromolecules 30, 2216–2218 (1997)

    Article  CAS  Google Scholar 

  39. F. David, The Synthesis of Bi-Based Photocatalysts and the Study of Their Catalytic Property of Decoloring Dyes in Waste Water (Donghua University, Donghua, 2017)

    Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China(No. 20207003, No. 20704019, No. 51603093), Innovative and Entrepreneurial Building Team Project of Jiangsu Province(No. 2015026). The authors wish to express their appreciation to the Analytical Center at Jiangsu University for the measurements of samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songjun Li or Xinhua Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Jiao, C., Han, L. et al. A Novel PHEMA-Based Bismuth Oxide Composite with High Photocatalytic Activity. J Inorg Organomet Polym 30, 4739–4752 (2020). https://doi.org/10.1007/s10904-020-01595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01595-6

Keywords

Navigation