Skip to main content

Advertisement

Log in

CuO and CuO/Vermiculite Based Nanoparticles in Antibacterial PVAc Nanocomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Copper oxide (CuO) nanoparticles are used in a wide range of applications due to its specific chemical, surface and microstructural characteristics, excellent physicochemical properties and cost effectiveness. The combination of the CuO with the vermiculite (V) particles allows to the preparation of nanostructured materials with specific properties. CuO nanoparticles were prepared by sonochemical synthetic method followed by a heat treatment (at 350 °C for 90 min) with the used of Cu(NO3)2 and NaOH precursors. Natural V was used for nanocomposite structures preparation (CuO/V). The nanostructured samples were characterized using scanning electron microscopy and X-ray diffraction. The particle size (median diameter, d50), ξ-potential and specific surface area were analysed. The antibacterial efficiency was evaluated by finding the minimum inhibitory concentration against Staphylococcus aureus and Enterococcus faecalis. The polyvinyl acetate (PVAc) nanocomposite plates were prepared using 0.1, 0.5 and 1 wt% of CuO (respectively CuO/V) nanostructured materials as functional nanofillers and were characterized by X-ray diffraction, scanning electron microscopy and 3D optical light microscope. The positive effect of vermiculite particles on homogeneous distribution in PVAc matrix was shown. The antibacterial activity was evaluated against Staphylococcus aureus and Enterococcus faecalis. Significant antibacterial behavior with long-acting after 24 h against Staphylococcus aureus was evaluated for all PVAc nanocomposites. The results show that already 0.1 wt% of CuO nanofillers (respectively CuO/V) in the PVAc matrix produce an antibacterial surface against Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Ahmad, M.B. Hågg, Polyvinyl acetate/titanium dioxide nanocomposite membranes for gas separation. J. Membr. Sci. 445, 200–210 (2013)

    Article  CAS  Google Scholar 

  2. E. Tisdale, C. Wilkins, Method development for compositional analysis of low molecular weight poly(vinyl acetate) by matrix-assisted/laser desorption-mass spectrometry and its application to analysis of chewing gum. Anal. Chim. Acta 820, 92–103 (2014)

    Article  CAS  Google Scholar 

  3. A. Salvini, L.M. Saija, M. Lugli, G. Cipriani, C. Giannelli, Synthesis of modified poly(vinyl acetate) adhesives. J. Adhes. Sci. Technol. 24, 1629–1651 (2012)

    Article  Google Scholar 

  4. S. Yang, S. Yoo, J. Lee, J. Kim, J. Yeum, Surface properties of a novel poly(vinyl alcohol) film prepared by heterogeneous saponification of poly(vinyl acetate) film. Polymers 9(10), 493 (2017)

    Article  Google Scholar 

  5. E.A. Trass, E.H. Shamy, E.I. Mehasseb, E.M. Kemary, CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258, 2997–3001 (2012)

    Article  Google Scholar 

  6. G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reusc, P. Reipd, R.P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Ag. 33, 587–590 (2009)

    Article  CAS  Google Scholar 

  7. D. Das, B.C. Nath, P. Phukon, S.K. Dolui, Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf. B Biointerfaces 101, 430–433 (2013)

    Article  CAS  Google Scholar 

  8. G.D. Ren, E.W.C. Hu, M.A. Cheng, P. Vargas-Reus, R.P. Reip, Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33(6), 587–590 (2009)

    Article  CAS  Google Scholar 

  9. R. Dadi, R. Azouani, M. Traore, Ch Mielcarek, A. Kanaev, Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. C 104, 109968 (2019)

    Article  CAS  Google Scholar 

  10. M.H. Cho, S. Bahadur, Study of the tribological synergistic effects in nano CuO filled and fiber-reinforced polyphenylene sulfide composites. Wear 258, 835–845 (2005)

    Article  CAS  Google Scholar 

  11. D.C. Moreira, L.A. Sphaier, J.M.L. Reis, L.C.S. Nunes, Experimental investigation of heat conduction in polyester-Al2O3 and polyester-CuO nanocomposites. Exp. Therm. Fluid. Sci. 35, 1458–1462 (2011)

    Article  CAS  Google Scholar 

  12. M. Vaseem, A. Umar, S.H. Kim, Y.B. Hahn, Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties. J. Phax. Chem. Lett. 112(15), 5729–5735 (2008)

    Article  CAS  Google Scholar 

  13. Z. Yin, Y. Ding, Q. Zheng, L. Guan, CuO/polypyrrole core-shell nanocomposites as anode materials for lithium-ion batteries. Electrochem. Commun. 20, 40–43 (2012)

    Article  CAS  Google Scholar 

  14. M. Heinlaan, A. Ivask, I. Bilnova, H.C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71, 1308–1316 (2008)

    Article  CAS  Google Scholar 

  15. K.Y. Yoon, J.H. Byeon, J.H. Park, J. Hwang, Susceptibility constants of Escherichia coli and Bacilius subtilis to silver and copper nanoparticles. Sci. Total. Environ. 373, 572–575 (2007)

    Article  CAS  Google Scholar 

  16. J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4, 707–716 (2008)

    Article  CAS  Google Scholar 

  17. D. Das, BCh Nath, P. Phukon, S.K. Dolui, Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf. B 101, 430–433 (2013)

    Article  CAS  Google Scholar 

  18. L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids: a potential antibacterial agent. Prog. Nat. Sci. 18, 939–944 (2008)

    Article  CAS  Google Scholar 

  19. R. Dadia, R. Azouani, M. Traore, Ch Mielcarek, A. Kanaeva, Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. C 104, 109968 (2019)

    Article  Google Scholar 

  20. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, Ch Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208–337 (2014)

    Article  CAS  Google Scholar 

  21. S. Mallakpoura, S. Mansourzadeh, Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli. Ultrason. Sonochem. 43, 91–100 (2018)

    Article  Google Scholar 

  22. A. Nouri, M.T. Yaraki, M. Ghorbanpour, S. Agarwal, V.K. Gupta, Enhanced Antibacterial effect of chitosan film using montmorillonite/CuO nanocomposite. Int. J. Biol. Macromol. 109, 1219–1231 (2018)

    Article  CAS  Google Scholar 

  23. K. Čech Barabaszová, S. Holešová, K. Šulcová, M. Ritz, J. Kupková, Hybrid antibacterial nanocomposites based on the vermiculite/zinc oxide-chlorhexidine. J. Nanosci. Nanotechnol 19, 3041–3048 (2019)

    Article  Google Scholar 

  24. K. Čech Barabaszová, S. Holešová, K. Šulcová, M. Hundáková, Effects of ultrasound on zinc oxide/vermiculite/chlorhexidine nanocomposite preparation and their antibacterial activity. Nanomaterials 9, 1309 (2019)

    Article  Google Scholar 

  25. M. Šupová, G. Simha Martynková, K. Barabaszová, Effect of nanofillers dispersion in polymer matrices: a review. Sci. Adv. Mater. 3, 1–25 (2011)

    Article  Google Scholar 

  26. T.M. Aminabhavi, P.E. Cassidy, N.S. Biradar, Versatile lightweight polymer composites. J. Macromol. Sci. C 27, 459–503 (1987)

    Article  Google Scholar 

  27. M. Sahu, R. Samal, T. Biswal, P. Sahoo, Synthesis and characterization of poly(vinyl acetate)/MMT nanocomposite flame retardant I. J. Mater. Sci. 4, 90–98 (2014)

    Google Scholar 

  28. M. Valášková, J. Tokarský, K. Čech Barabaszová, V. Matějka, M. Hundáková, E. Pazdziora, D. Kimmer, New aspects on vermic-ulite filler in polyethylene. Appl. Clay Sci. 72, 110–116 (2013)

    Article  Google Scholar 

  29. M. Hundáková, J. Tokarský, M. Valášková, P. Slobodian, E. Pazdziora, D. Kimmer, Structure and antibacterial properties of polyethylene/organovermiculite composites. Solid. State Sci. 48, 197–204 (2015)

    Article  Google Scholar 

  30. K. Čech Barabaszová, S. Holešová, M. Hundáková, E. Pazdziora, M. Ritz, Antibacterial LDPE nanocomposites based on zinc oxide nanoparticles/vermiculite nanofiller. J. Inorg. Organ. Polym. 27, 986–995 (2017)

    Article  Google Scholar 

  31. S. Pavlidou, C.D. Papaspyrides, A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)

    Article  CAS  Google Scholar 

  32. M. Kotal, A.K. Bhowmick, Polymer nanocomposites from modified clays: recent advances and challenge. Prog. Polym. Sci. 51, 127–187 (2015)

    Article  CAS  Google Scholar 

  33. A.M. Khaneghah, S.M.B. Hashemi, S. Limbo, Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food Bioprod. Process. 111, 1–19 (2018)

    Article  Google Scholar 

  34. H.M.C. de Azeredo, Nanocomposites for food packaging applications. Food Res. Int. 42, 1240–1253 (2009)

    Article  Google Scholar 

  35. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachrichten Gesellschaft Wissenschaft Gottingen 2, 98–100 (1918)

    Google Scholar 

  36. K. Čech Barabaszová, M. Valášková, Characterization of vermiculite particles after different milling techniques. Powder Technol. 239, 277–283 (2013)

    Article  Google Scholar 

  37. S. Sohrabnezhad, M.J. Mehdipour Moghaddam, T. Salavatiyan, Synthesis and characterization of CuO-montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochim. Spectrochimica Acta Part A 125, 73–78 (2014)

    Article  CAS  Google Scholar 

  38. B.J. Holland, J.N. Hay, The thermal degradation of poly(vinyl acetate) measured by thermal analysis-Fourier transform infrared spectroscopy. Polymer 43, 2207–2211 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project No. SP2019/24 “Hybrid and biodegradable clay nanocomposite materials” and No. SP2020/08 “Hybrid clay nanofillers for antimicrobial polymer films”. Authors thank to S. Kozubová for SEM micrographs and to Dr. Erich Pazdziora for antibacterial activity/tests performing.

Author information

Authors and Affiliations

Authors

Contributions

KČB: designed the work, performed the synthesis, OM, SEM, PS, ξ-potential analysis and AC evaluated, writing original draft, revised and finalized the manuscript; SH: TGA analysis, writing and revised the manuscript; MB: performed the synthesis and writing original draft; MH: XRD analysis and revised the manuscript.

Corresponding author

Correspondence to Karla Čech Barabaszová.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čech Barabaszová, K., Holešová, S., Bílý, M. et al. CuO and CuO/Vermiculite Based Nanoparticles in Antibacterial PVAc Nanocomposites. J Inorg Organomet Polym 30, 4218–4227 (2020). https://doi.org/10.1007/s10904-020-01573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01573-y

Keywords

Navigation