Abstract
The present study focused on the fabrication, demonstration and application of silver nanoparticles (Ag-nanoparticles), which can be used in biomedical research and ecological cleaning applications. The reducing agents which are present in the leaves of Sansevieria roxburghiana (Sr) plant were involved in the conversion of metal ion to metal nanoparticles. Formation of colloidal Sr-Ag-nanoparticles was preliminarily confirmed by UV–Vis spectroscopy. In the UV–Vis analysis, a predominate peak was observed in the range of around 425 nm relating to the Plasmon absorbance of the Sr-Ag-nanoparticles. Fourier transform infrared spectroscopy was used for the confirmation of phenolic groups involved in the reduction mechanism in the formation of Sr-AgNPs; X-ray diffraction and energy dispersive X-ray analysis are used on behalf of the morphology and elemental composition. The interpretation of size and shape of the Sr-Ag nanoparticles were performed by Scanning electron microscopy systems which confirmed a size range of 10 to 20 nm. Antibacterial activity of bio-synthesized Sr—Sr-Ag nanoparticles shows effective inhibition against human pathogens including, Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 25922). Thus, the significant outcomes of this study would help to formulate value-added herbal-based nano-materials in biomedical and nanotechnology industries.
This is a preview of subscription content, access via your institution.






References
I. Khan, K. Saeed, I. Khan, Arab. J. Chem. 12, 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011
C.S. Espenti, K.S.V.K. Rao, K.M. Rao, Mat. Lett. 174, 129–133 (2016)
B.M. Chang, L. Pan, H.H. Lin, H.C. Chang, Sci. Rep. 9, 13164, (2019). https://www.nature.com/articles/s41598-019-49675-z
W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Anal. Chem. 79(11), 4215–4221 (2007)
S. Akbar, K. Henrik, J. Liselotte, K. Andreas, M.B. Poul, B.O. Lene, Nanoscale 10, 9097–9107 (2018). https://doi.org/10.1039/C8NR02275E
P.A. Clara, A.W. Katherine, O.O. Sherine, M.D. Kathryn, PLoS ONE 9(1), e85981 (2014). https://doi.org/10.1371/journal.pone.0085981
P. Mathur, S. Jha, S. Ramteke, N.K. Jain, Art. Cells Nanomed. Biotech. 46(sup1), 115–126 (2018). https://doi.org/10.1080/21691401.2017.1414825
C. Bankier, R.K. Matharu, Y.K. Cheong, Sci. Rep. 9, 16074 (2019). https://doi.org/10.1038/s41598-019-52473-2
P.N. Navya, A. Kaphle, S.P. Srinivas, S.K. Bhargava, V.M. Rotello, H.K. Daima, Nano Converg. 6, 23 (2019). https://doi.org/10.1186/s40580-019-0193-2
C.S. Espenti, K.S.V.K. Rao, K.M. Rao, S.P. Kumar, Cog. Chem. 2(1), 1144296 (2016)
Z. Zhang, W. Shen, J. Xue, Y. Liu, Y. Liu, P. Yan, J. Liu, J. Tang, Nano. Res. Let. (2018). https://doi.org/10.1186/s11671-018-2450-4
C.S. Espenti, K.S.V.K. Rao, K.M. Rao, J. App. Pharm. Sci. 6(10), 055–062 (2016)
K.Y. Khaw, M.O. Parat, P.N. Shaw, J.R. Falconer, Molecules 22, 1186 (2017)
J. Kohl, R. Kolnaar, W.J. Ravensberg, Front. Plant Sci. 10, 845 (2019)
R.A. Hamouda, M.H. Hussein, R.A. Abo-elmagd, Sci. Rep. 9, 13071 (2019). https://doi.org/10.1038/s41598-019-49444-y
K.M. Reddy, Y.R. Reddy, E.C. Sekhar, L.K. Babu, Matter: Int J. Sci. Tech. 3(2), 478–492 (2017). https://doi.org/10.20319/mijst.2017.32.478492
S. Jaswanth, M. Umamahesh, A. Prasad, M. Arundathi, R.G. Venkata, N. Hariram, A.V. Rajulu, Inorg. Nano-Met. Chem. (2020). https://doi.org/10.1080/24701556.2020.1725571
K.M. Rao, C.S. Espenti, K.S.V.K. Rao, Ind. J. Adv. Chem. Sci. 5, 24–29 (2017). https://doi.org/10.22607/IJACS.2017.501004
K.S.V.K. Rao, C.S. Espenti, K.M. Rao, Ind. J. Adv. Chem. Sci. 5(2), 102–107 (2017). https://doi.org/10.22607/IJACS.2017.502005
A. Sirinthipaporn, W. Jiraungkoorskul, Pharmacogn. Rev. 11(21), 35–38 (2017). https://doi.org/10.4103/phrev.phrev_53_16
F. Mujeeb, P. Bajpai, N. Pathak, BioMed. Res. Inter. (2014). https://doi.org/10.1155/2014/497606
A.B. Birusanti, M. Umamahesh, C.S. Espenti, IET Nanobiotech. 13(1), 71–76 (2019). https://doi.org/10.1049/iet-nbt.2018.5117
M. Awwad, N.M. Salem, A.O. Abdeen, Int. J. Ind. Chem. 4, 29 (2013). https://www.industchem.com/content/4/1/29
M. Michalska, A. Iwan, M. Andrzejczuk, A. Roguska, A. Sikora, B. Boharewicz, I. Tazbir, A. Hreniak, S. Poposki, K.P. Korona, New J. Chem. (2018). https://doi.org/10.1039/C7NJ05180H
M. Vanaja, G. Annadurai, Appl. Nanosci. 3, 217–223 (2013). https://doi.org/10.1007/s13204-012-0121-9
M. Stefanos, M.P. Roger, T.K.T. Nguyen, Nanoscale 10, 12871 (2018). https://doi.org/10.1039/C8NR02278J
A.A. Alomari, K.E. Kloub Fares, N.E. Moustafa, Cog. Chem. 4(1), 1532374 (2018). https://doi.org/10.1080/23312009.2018.1532374
R.H. Ahmed, D.E. Mustafa, Int. Nano Lett. 10, 1–14 (2020). https://doi.org/10.1007/s40089-019-00291-9
K.S. Siddiqi, A. Husen, R.A.K. Rao, J. Nanobiotech. 16, 14 (2018). https://doi.org/10.1186/s12951-018-0334-5
S.H. Lee, B.H. Jun, Int. J. Mol. Sci. 20, 865 (2019). https://doi.org/10.3390/ijms20040865
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conficts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rama Krishna, A.G., Espenti, C.S., Rami Reddy, Y.V. et al. Green Synthesis of Silver Nanoparticles by Using Sansevieria Roxburghiana, Their Characterization and Antibacterial Activity. J Inorg Organomet Polym 30, 4155–4159 (2020). https://doi.org/10.1007/s10904-020-01567-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10904-020-01567-w
Keywords
- Sansevieria roxburghiana
- Sr-Ag nanoparticles
- Green-synthesis
- Analytical analysis
- Antibacterial activity