Skip to main content
Log in

Nano-Sized MIL-100(Fe) as a Carrier Material for Nitidine Chloride Reduces Toxicity and Enhances Anticancer Effects In Vitro

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nitidine chloride (NC) is a natural alkaloid and has strong antitumor activity. However, its clinical application is limited due to the observed non-specific toxicity and low bioavailability. In this study, we synthesized nanoscale metal–organic frameworks MIL-100(Fe), which was used as a nanocarrier to deliver NC. MIL-100(Fe) was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunauer–Emmett–Teller (BET), dynamic light scattering (DLS), and scanning electron microscopy (SEM). NC was encapsulated in MIL-100(Fe) with a high loading capacity of 33.43 wt%. It shown that NC has progressive releasing behavior with 68% in 4 days under phosphate-buffered saline. The in vitro cytotoxicity of free NC and NC@MIL-100(Fe) were investigated by the MTT assay using the healthy liver cell line (LO2) and a liver cancer cell line (HepG2). Interestingly, NC@MIL-100(Fe) exhibited low toxicity on LO2 cells and high cytotoxicity in HepG2 cells compared to free NC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Hu, W.D. Zhang, R.H. Liu, C. Zhang, Y.H. Shen, H.L. Li, M.J. Liang, X.K. Xu, Benzophenanthridine alkaloids from Zanthoxylum nitidum (ROXB) DC, and their analgesic and anti-inflammatory activities. Chem. Biodivers 3, 990–995 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. J. Bouquet, M. Rivaud, S. Chevalley, E. Deharo, V. Jullian, A. Valentin, Biological activities of nitidine, a potential antimalarial lead compound. Malar. J. 11(1), 67 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Khan, T.B. Hadda, R. Touzani, Diverse therapeutic potential of nitidine a comprehensive review. Curr. Drug Metab. 19, 986–991 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. L.M. Liu, P. Lin, H. Yang, Y.W. Dang, G. Chen, Gene profiling of HepG2 cells following nitidine chloride treatment: an investigation with microarray and Connectivity Mapping. Oncol. Rep. 41, 3244–3256 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. L.H. Kim, S. Khadka, J.A. Shin, J.Y. Jung, M.H. Ryu, H.J. Yu, H.N. Lee, B. Jang, I.H. Yang, D.H. Won, H.J. Kwon, J.H. Jeong, S.D. Hong, N.P. Cho, S.D. Cho, Nitidine chloride acts as an apoptosis inducer in human oral cancer cells and a nude mouse xenograft model via inhibition of STAT3. Oncotarget. 8, 91306–91315 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  6. H. Xu, T. Cao, X. Zhang, Y. Shi, Q. Zhang, S. Chai, L. Yu, G. Jin, J. Ma, P. Wang, Y. Li, Nitidine chloride inhibits SIN1 expression in osteosarcoma cells. Mol. Ther. Oncolytics. 12, 224–234 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. H.P. Mou, P. Guo, X.M. Li, C.L. Zhang, J. Jiang, L.H. Wang, Q. Wang, Z.P. Yuan, Nitidine chloride inhibited the expression of S phase kinase-associated protein 2 in ovarian cancer cells. Cell Cycle 16, 1366–1375 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M.J. Sun, N. Zhang, X.L. Wang, Y.M. Li, W.W. Qi, H.W. Zhang, Z.J. Li, Q.F. Yang, Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells. Cell. Biosci. 6(1), 44 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  9. J. Liao, T. Xu, J.X. Zheng, J.M. Lin, Q.Y. Cai, D.B. Yu, J. Peng, Nitidine chloride inhibits hepatocellular carcinoma cell growth in vivo through the suppression of the JAK1/STAT3 signaling pathway. Int. J. Mol. Med. 32, 79–84 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. X.H. Ou, Y. Lu, L.F. Liao, D.N. Li, L.M. Liu, H.G. Liu, H. Xu, Nitidine chloride induces apoptosis in human hepatocellular carcinoma cells through a pathway involving p53, p21, Bax and Bcl-2. Oncol. Rep. 33, 1264–1274 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. M. Wei, H.G. Liu, L.M. Liu, D.N. Li, In vitro nephrotoxicity of nitidine chloride in human liver L-02 and kidney 293 cells. Chin. J. New Drugs. 19, 56–59 (2010)

    CAS  Google Scholar 

  12. T.S. Yarza, A. Mielcarek, P. Couvreur, C. Serre, Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv. Mater. 30(37), 1707365 (2018)

    Article  Google Scholar 

  13. Q.H. Hu, H. Li, L.H. Wang, H.Z. Gu, C.H. Fan, DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019)

    CAS  PubMed  Google Scholar 

  14. K. Bhattacharyya, S. Mukherjee, Fluorescent metal nano-clusters as next generation fluorescent probes for cell imaging and drug delivery. Bull. Chem. Soc. Jpn. 91, 447–454 (2018)

    Article  CAS  Google Scholar 

  15. G.X. Lan, K.Y. Ni, W.B. Lin, Nanoscale metal-organic frameworks for phototherapy of cancer. Coord. Chem. Rev. 379, 65–81 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. A. Ali, S. Ahmed, A review on chitosan and its nanocomposites in drug delivery. J. Biol. Macromol. 109, 273–286 (2018)

    Article  CAS  Google Scholar 

  17. K. Fukunaga, H. Tsutsumi, H. Mihara, Self-assembling peptides as building blocks of functional materials for biomedical applications. Bull. Chem. Soc. Jpn. 92, 391–399 (2019)

    Article  CAS  Google Scholar 

  18. W.C. Liu, Y. Pan, W.W. Xiao, H.J. Xum, D. Liu, F. Ren, X.S. Peng, J.Q. Liu, Recent developments on zinc(II) metal–organic framework nanocarriers for physiological pH responsive drug delivery. Med. Chem. Commun. 10, 2038–2051 (2019)

    Article  CAS  Google Scholar 

  19. P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int. Ed. 45, 5974–5978 (2006)

    Article  CAS  Google Scholar 

  20. D. Cunha, M.B. Yahia, S. Hall, S.R. Miller, H. Chevreau, E. Elkaim, G. Maurin, P. Horcajada, C. Serre, Rationale of drug encapsulation and release from biocompatible porous metal-organic frameworks. Chem. Mater. 25, 2767–2776 (2013)

    Article  CAS  Google Scholar 

  21. M. Rezaei, A. Abbasi, R. Varshochian, R. Dinarvand, M. Jeddi-Tehrani, NanoFe-MIL-100 containing docetaxel for breast cancer therapy. Artif. Cells. Nanomed. Biotechnol. 46, 1390–1401 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. M.R. di Nunzio, V. Agostoni, B. Cohen, R. Gref, A. Douhal, A "ship in a bottle" strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J. Med. Chem. 57, 411–420 (2014)

    Article  PubMed  Google Scholar 

  23. W.Y. Li, H. Yin, D. Bardelang, J.B. Xiao, Y. Zheng, R.B. Wang, Supramolecular formulation of nitidine chloride can alleviate its hepatotoxicity and improve its anticancer activity. Food Chem. Toxicol. 109, 923–929 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. F.M. Zhang, J. Shi, Y. Jin, Y.H. Fu, Y.J. Zhong, W.D. Zhu, Facile synthesis of Fe-MIL-100 under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem. Eng. J. 259, 183–190 (2015)

    Article  CAS  Google Scholar 

  25. Y.P. Wu, J.W. Tian, S. Liu, B. Li, J. Zhao, L.F. Ma, D.S. Li, Y.Q. Lan, X. Bu, Bi-microporous metal-organic-frameworks with cubane [M4(OH)4] (M = Ni, Co) clusters and pore space partition for electrocatalytic methanol oxidation reaction. Angew. Chem. Int. Ed. 58, 12185–12189 (2019)

    Article  CAS  Google Scholar 

  26. H.R. Fu, L.B. Yan, N.T. Wu, L.F. Ma, S.Q. Zang, Stable dye-encapsulated indium–organic framework as dual-emitting sensor for the detection of Hg2+/Cr2O72- and a wide range of nitro-compounds. J. Mater. Chem. C 6, 6440–6448 (2018)

    Article  CAS  Google Scholar 

  27. X. Shen, Y. Pan, Z.H. Sun, D. Liu, H.J. Xu, M. Trivedi, A. Kumar, J.X. Chen, J.Q. Liu, Design of metal-organic frameworks for ph-responsive drug delivery application mini-rev med. Chem. 19, 1644–1665 (2019)

    CAS  Google Scholar 

  28. H.R. Fu, L.B. Yan, N.T. Wu, L.F. Ma, S.Q. Zang, Dual-emission MOFI dye sensor for ratiometric fluorescence recognition of RDX and detection of a broad class of nitro-compounds. J. Mater. Chem. A 6, 9183–9191 (2018)

    Article  CAS  Google Scholar 

  29. X. Feng, F. Li, L.Y. Wang, A series of homonuclear lanthanide coordination polymers based on a fluorescent conjugated ligand: syntheses, luminescence and sensor. CrystEngComm 17, 7878–7887 (2015)

    Article  CAS  Google Scholar 

  30. G. Chen, X. Leng, J. Luo, L. You, C. Qu, X. Dong, H. Huang, X. Yin, J. Ni, In vitro toxicity study of a porous iron(iii) metal organic framework. Molecules 24, 1211–1220 (2019)

    Article  PubMed Central  Google Scholar 

  31. Y. Han, W. Liu, J. Huang, S. Qiu, H. Zhong, D. Liu, J. Liu, Cyclodextrin-based metal-organic frameworks (CD-MOFs) in pharmaceutics and biomedicine. Pharmaceutics. 10, 271–283 (2018)

    Article  CAS  PubMed Central  Google Scholar 

  32. L.P. Li, M.J. Tu, X. Yang, S.Y. Sun, X.D. Wu, H. Zhou, S. Zeng, H.D. Jiang, The contribution of human OCT1, OCT3, and CYP3A4 to nitidine chloride-induced hepatocellular toxicity. Drug Metab Dispos. 42, 1227–1234 (2014)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Guangxi Natural Science Foundation (No. 2016GXNSFAA380063) and Guangxi Science Foundation (No. AD18126005) and and Special Funds for Scientific Technological Innovation of Undergraduates in Guangdong Province (pdjh2019b0222, pdjh2019b0219, pdjh2019b0221 and pdjh2020b0267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, J., Zheng, Y., Fang, L. et al. Nano-Sized MIL-100(Fe) as a Carrier Material for Nitidine Chloride Reduces Toxicity and Enhances Anticancer Effects In Vitro. J Inorg Organomet Polym 30, 3388–3395 (2020). https://doi.org/10.1007/s10904-020-01548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01548-z

Keywords

Navigation