Skip to main content

Advertisement

Log in

Development of Highly Sensitive Ag NPs Decorated Graphene FET Sensor for Detection of Glucose Concentration

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this research work, non-enzymatic FET sensor using silver nanoparticles (Ag NPs) decorated graphene has been fabricated for the detection of various glucose concentration levels. Graphene was deposited using chemical vapour deposition technique and Ag NPs was decorated on the surface of graphene via sputtering technique. FET glucose sensor was tested under optimal conditions (pH 7.4) in linear range 0.1 µM–0.25 µM of glucose concentration levels. It was observed that, developed FET glucose sensor delivers high sensitivity which was compared with previously reported electrodes. The reproducibility of FET based glucose sensor was tested using different interfering species along with glucose concentrations. On examining the behavioural characteristics of FET sensor towards glucose detection it was found to offer a potential device for further real-time clinical applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.G. Spanakis, F. Chiarugi, A. Kouroubali et al., Diabetes management using modern information and communication technologies and new care models. Interact J. Med. Res. 1(2), e8 (2012)

    PubMed  PubMed Central  Google Scholar 

  2. Y.H. Lin, F. Lu, Y. Tu, Z.F. Ren, Glucose biosensors based on carbon nanotubes nanoelectrodes ensembles. Nano. Lett. 4, 191–195 (2014)

    Google Scholar 

  3. P. Si, Y. Huang, T. Wang, J. Ma, Nanomaterials for electrochemical non enzymatic glucose biosensor. RSC Adv. Rev. 3(11), 3487–3502 (2013)

    CAS  Google Scholar 

  4. K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensor: a persepective and an evaluation. Int. J. Electrochem. Sci. 5, 1246–1301 (2010)

    CAS  Google Scholar 

  5. X. Zong, R. Zhu, ZnO nanorod-based FET biosensor for continuous glucose monitoring. Sens. Actuators B Chem. 255, 2448–2453 (2018)

    CAS  Google Scholar 

  6. Y.-C. Syu, W.-E. Hsu, C.-T. Lin, Review—field-effect transistor biosensing: devices and clinical applications. ECS J. Solid State Sci. Technol. 7(7), Q3196–Q3207 (2018)

    CAS  Google Scholar 

  7. M. Kaisti, Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 98, 437–448 (2017)

    CAS  PubMed  Google Scholar 

  8. A. Nehra, K.P. Singh, Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens. Bioelectron. 74, 731–743 (2015)

    CAS  PubMed  Google Scholar 

  9. X. Gong, Y. Gu, F. Zhang, Z. Liu, Y. Li, G. Chen, B. Wang, High-performance non-enzymatic glucose sensors based on CoNiCu alloy nanotubes arrays prepared by electrodeposition. Front. Mater. 6(3), 1–9 (2019)

    Google Scholar 

  10. K.J. Cash, H.A. Clark, Nanosensors and nanomaterials formonitoring glucose in diabetes. Trends Mol Med. 16(12), 584–593 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Viswanathan, T.N. Narayanan, K. Aran, K.D. Fink, J. Paredes, P.M. Ajayan, S. Filipek, P. Miszta, H.C. Tekin, F. Inci, U. Demirci, P. Li, K.I. Bolotin, D. Liepmann, V. Renugopalakrishanan, Graphene–protein field effect biosensors: glucose sensing. Mater. Today 18(9), 513–522 (2015)

    CAS  Google Scholar 

  12. Z. Hao, Y. Zhu, X. Wang, P.G. Rotti, C. Di Marco, S.R. Tyler, X. Zhao, J.F. Engelhardt, J. Hone, Q. Lin, Real-time monitoring of insulin using a graphene field-effect transistor aptameric nanosensor. ACS Appl. Mater. Interfaces 9, 27504–27511 (2017)

    CAS  PubMed  Google Scholar 

  13. M.A. Amir, A. Al-Mokaram, R. Yahya, M.M. Abdi, H.N.M.E. Mahmud, The development of non-enzymatic glucose biosensors based on electrochemically prepared polypyrrole–chitosan–titanium dioxide nanocomposite films. Nanomaterials 7, 129–141 (2017)

    Google Scholar 

  14. M. Zhang, C. Liao, C.H. Mak, P. You, C.L. Mak, F. Yan, Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 5(08311), 1–6 (2015)

    Google Scholar 

  15. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    CAS  PubMed  Google Scholar 

  16. P.K. Kannan, D.J. Late, H. Morgan, C. Rout, S, Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7(32), 13293–13312 (2015)

    CAS  PubMed  Google Scholar 

  17. B. Zhan, C. Li, J. Yang, G. Jenkins, W. Huang, X. Dong, Graphene field-effect transistor and its application for electronic sensing. Small 10(20), 4042–4065 (2014)

    CAS  PubMed  Google Scholar 

  18. J. Yan, T. Zhong, W. Qi, H. Wang, The application of assembled inorganic and organic hybrid nanoarchitecture of Prussian blue/polymers/graphene in glucose biosensing. J InorgOrganometPolym 25, 275–281 (2015)

    CAS  Google Scholar 

  19. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    CAS  PubMed  Google Scholar 

  20. D.-U.-J. Jung, R. Ahmad, Y.-B. Hahn, Non-enzymatic flexible field-effect transistor based glucose sensor fabricated using NiO quantum dots modified ZnO nanorods. J. Colloid Interface Sci. 512, 21–28 (2018)

    CAS  PubMed  Google Scholar 

  21. R. Ahmad, N. Tripathy, M. Sang Ahn, K.S. Bhat, T. Mahmoudi, Y. Wang, J.Y. Yoo, D. Kwon, H.Y. Yang, Y.B. Hahn, Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci. Rep. 7(5715), 1–10 (2017)

    Google Scholar 

  22. A.A. Ensafi, N. Zandi-Atashbar, B. Rezaei, M. Ghiaci, M.E. Chermahini, P. Moshiri, Non-enzymatic glucose electrochemical sensor based on silver nanoparticle decorated organic functionalized multiwall carbon nanotubes. RSC Adv. 6(65), 60926–60932 (2016)

    CAS  Google Scholar 

  23. G. Padmalaya, B.S. Sreeja, P.D. Kumar, S. Radha, V. Poornima, M. Arivanandan, S. Shrestha, T.S. Uma, A facile synthesis of cellulose acetate functionalized zinc oxide nanocomposite for electrochemical sensing of cadmium ions. J Inorg. Organo. Met. Polym. Mater 29(3), 989–999 (2018)

    Google Scholar 

  24. N. Tripathy, D.-H. Kim, Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Converg. 5(27), 1–10 (2018)

    Google Scholar 

  25. Y.H. Kwak, D.S. Choi, Y.N. Kim, H. Kim, Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens. Bioelectron. 37, 82–87 (2012)

    CAS  PubMed  Google Scholar 

  26. F.T. Johra, J.-W. Lee, W.-G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20(5), 2883–2887 (2014)

    CAS  Google Scholar 

  27. A. Maleki, A.R. Taherizadeh, H.K. Issa, B. Niroumand, A.R. Allafchian, A. Ghaei, Development of a new magnetic aluminum matrix nanocomposite. Ceram. Int. 44(13), 15079–15085 (2018)

    CAS  Google Scholar 

  28. T. Theivasanthi, M. Alagar, Electrolytic synthesis and characterization of silver nanopowder. Nano Biomed. Eng. 4(2), 58–65 (2012)

    CAS  Google Scholar 

  29. A. Angelova, M. Ollivon, A. Campitelli, C. Bourgaux, Lipid cubic phases as stable nanochannel network structures for protein biochip development: X-ray diffraction study. Langmuir 19, 6928–6935 (2003)

    CAS  Google Scholar 

  30. K.B. Male, S. Hrapovic, Y. Liu, D. Wang, J.H.T. Luong, Electrochemical detection of carbohydrates using copper Nanoparticles and Nanotubes. Anal. Chim. Acta 516, 35–41 (2004)

    CAS  Google Scholar 

  31. A.A. Cagang, I.H. Abidi, A. Tyagi, J. Hu, F. Xu, T.J. Lu, Z. Luo, Graphene based FET in two dimensional paper networks. Anal. Chim.Acta 101, 917–928 (2016)

    Google Scholar 

  32. C. Liao, C. Mak, M. Zhang, H.L. Chan, F. Yan, Flexible organic electrochemical transistor for high selective enzyme biosensor and used for saliva testing. Adv. Mater 27(4), 676–681 (2015)

    CAS  PubMed  Google Scholar 

  33. W. Wang, L. Zhang, S. Tong, X. Li, W. Song, Three dimensional network films of electrospun copper oxide nanofibers for glucose. Biosens. Bioelectron. 25(4), 708–714 (2009)

    CAS  PubMed  Google Scholar 

  34. J. Luo, H.Y. Zhang, S.S. Jiang, J.Q. Jiang, X.Y. Lu, Facile one step electrochemical fabrication of non-enzymatic glucose selective glassy carbon electrode modified with copper nanoparticles & graphene. MicrochimicaActa 177, 485–490 (2012)

    CAS  Google Scholar 

  35. P. Luo, F. Zhang, R.P. Baldwin, Comparison of metallic electrode for constant potential amperometric detection of aminoacid& related compound in flow system. Anal. Chim. Acta 244, 169–178 (1991)

    CAS  Google Scholar 

  36. G. Liu, Y. Lin, Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal. Chem. 77, 5894–5901 (2005)

    CAS  PubMed  Google Scholar 

  37. W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of Mercury(II) ions. Anal. Chem. 84, 5351–5357 (2012)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Padmalaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archana, R., Sreeja, B., Nagarajan, K. et al. Development of Highly Sensitive Ag NPs Decorated Graphene FET Sensor for Detection of Glucose Concentration. J Inorg Organomet Polym 30, 3818–3825 (2020). https://doi.org/10.1007/s10904-020-01541-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01541-6

Keywords

Navigation