Skip to main content
Log in

A Versatile Material: Perovskite Bismuth Ferrite Microparticles as a Potential Catalyst for Enhancing Fuel Efficiency and Degradation of Various Organic Dyes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The investigation of photocatalytic and fuel additive properties of bismuth ferrite (BiFeO3) microparticles is main objective of this work. Individual properties of bismuth and iron are synergistically reinforce in BiFeO3. X-ray diffraction spectroscopy is used to analyze the phase, phase purity and lattice structure of BiFeO3. Fuel additive and photocatalytic nature are linked to morphology and size of particles. Morphological analysis showed that rod like particles are arranged in the form of star like structures. Fuel additive role of BiFeO3 is analyzed by testing calorific value, flash point, fire point, surface tension, kinematic viscosity, cloud point and pour point of fuel loaded with 20, 40, 60 and 80 ppm additive. Amount of additive has affected all the properties of fuel. So additive role of BiFeO3 is analyzed which helps to decide whether BiFeO3 can be used as additive on large scale or not. Photocatalytic degradation of dyes is studied in aqueous medium using BiFeO3 as photocatalyst. Photocatalytic role of BiFeO3 is analyzed by measuring apparent rate constant (kapp), percentage degradation and degradation time of all dyes. kapp of dyes is as follows: CV (0.0371 min−1), RB5 (0.0186 min−1), MR (0.0159 min−1), MB (0.0147 min−1), EBT (0.0142 min−1), MX (0.0135 min−1), CR (0.0133 min−1), FG (0.0098 min−1) and SN (0.0088 min−1). Comparison of all these parameters helps to analyze that degradation of dyes is linked to their structure and nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.W. Murray, Chem. Rev. 108, 2688–2720 (2008)

    CAS  PubMed  Google Scholar 

  2. Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Chem. Soc. Rev. 39, 2184–2202 (2010)

    CAS  PubMed  Google Scholar 

  3. V.N. Nikiforov, E.Y. Filinova, Mag. Nanopart. 55, 393–455 (2009)

  4. S. Guo, E. Wang, Acc. Chem. Res. 44, 491–500 (2011)

    CAS  PubMed  Google Scholar 

  5. D.R. Kulkarni, S.J. Malode, K. Keerthi Prabhu, N.H. Ayachit, R.M. Kulkarni, N.P. Shetti, Mater. Chem. Phys. 246, 122791 (2020)

    CAS  Google Scholar 

  6. J. Zhang, X. Qu, Y. Han, L. Shen, S. Yin, G. Li, Y. Jiang, S. Sun, Appl B Catal (2020). https://doi.org/10.1016/j.apcatb.2019.118345

    Article  Google Scholar 

  7. X. Yuan, D. Dragoe, P. Beaunier, D.B. Uribe, L. Ramos, M.G. Méndez-Medrano, H. Remita, J. Mater. Chem. A 8, 268–277 (2020)

    CAS  Google Scholar 

  8. N. Khalid, A. Majid, M.B. Tahir, N. Niaz, S. Khalid, Ceram. Int. 43, 14552–14571 (2017)

    CAS  Google Scholar 

  9. M.B. Tahir, G. Nabi, T. Iqbal, M. Sagir, M. Rafique, Ceram. Int. 44, 6686–6690 (2018)

    CAS  Google Scholar 

  10. M.B. Tahir, G. Nabi, N. Khalid, M. Rafique, Ceram. Int. 44, 5705–5709 (2018)

    CAS  Google Scholar 

  11. N. Khalid, M. Liaqat, M.B. Tahir, G. Nabi, T. Iqbal, N. Niaz, Ceram. Int. 44, 546–549 (2018)

    CAS  Google Scholar 

  12. W. Sun, X. Cai, Z. Wang, H. Zhao, M. Lana, Microchem. J (2020). https://doi.org/10.1016/j.microc.2020.104595

    Article  Google Scholar 

  13. M. Hyder, G.R.K. Reddy, B. Naveen, P.S. Kumar, Chem Lett Phys (2020). https://doi.org/10.1016/j.cplett.2020.137086

    Article  Google Scholar 

  14. M. Yan, M. Zhang, S. Ge, J. Yu, M. Li, J. Huang, S. Liu, Analyst 137, 3314–3320 (2012)

    CAS  PubMed  Google Scholar 

  15. C.Y. Fu, K.W. Kho, U. Dinish, Z.Y. Koh, O. Malini, J. Raman Spect. 43, 977–985 (2012)

    CAS  Google Scholar 

  16. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025–1102 (2005)

    CAS  PubMed  Google Scholar 

  17. A.D. Bokare, R.C. Chikate, C.V. Rode, K.M. Paknikar, Appl. Catal. B 79, 270–278 (2008)

    CAS  Google Scholar 

  18. F. Godínez-Salomón, R.N. Mendoza-Cruz, M.J. Arellano-Jimenez, M. Jose-Yacaman, C.P. Rhodes, ACS Appl. Mater. Interface 9, 18660–18674 (2017)

    Google Scholar 

  19. A.U. Nilekar, S. Alayoglu, B. Eichhorn, M. Mavrikakis, J. Am. Chem. Soc. 132, 7418–7428 (2010)

    CAS  PubMed  Google Scholar 

  20. N. Khalid, E. Ahmed, N. Niaz, G. Nabi, M. Ahmad, M.B. Tahir, M. Rafique, M. Rizwan, Y. Khan, Ceram. Int. 43, 6771–6777 (2017)

    CAS  Google Scholar 

  21. K. Deplanche, M.L. Merroun, M. Casadesus, D.T. Tran, I.P. Mikheenko, J.A. Bennett, J. Zhu, I.P. Jones, G.A. Attard, J. Wood, J. R. Soc. Interface 9, 1705–1712 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. C.H. Liu, R.H. Liu, Q.J. Sun, J.B. Chang, X. Gao, Y. Liu, S.T. Lee, Z.H. Kang, S.D. Wang, Nanoscale 7, 6356–6362 (2015)

    CAS  PubMed  Google Scholar 

  23. G. Fu, H. Liu, N. You, J. Wu, D. Sun, L. Xu, Y. Tang, Y. Chen, Nano Res. 9, 755–765 (2016)

    CAS  Google Scholar 

  24. M. Hosseini, T. Barakat, R. Cousin, A. Aboukaïs, B.L. Su, G. De Weireld, S. Siffert, Appl. Catal. B 111, 218–224 (2012)

    Google Scholar 

  25. Z. Han, S. Li, F. Jiang, T. Wang, X. Ma, J. Gong, Nanoscale 6, 10000–10008 (2014)

    CAS  PubMed  Google Scholar 

  26. W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlücker, J. Am. Chem. Soc. 133, 19302–19305 (2011)

    CAS  PubMed  Google Scholar 

  27. G.N. Jovanovic, P. ŽnidaršičPlazl, P. Sakrittichai, K. Al-Khaldi, Ind. Eng. Chem. Res. 44, 5099–5106 (2005)

    CAS  Google Scholar 

  28. Z.-H. Lu, J. Li, A. Zhu, Q. Yao, W. Huang, R. Zhou, R. Zhou, X. Chen, Int. J. Hydrogen Energy 38, 5330–5337 (2013)

    CAS  Google Scholar 

  29. H. Beygi, A. Babakhani, J. Magn. Magn. Mater. 421, 177–183 (2017)

    CAS  Google Scholar 

  30. X. Nie, J. Liu, X. Zeng, D. Yue, J. Environ. Sci. 25, 473–478 (2013)

    CAS  Google Scholar 

  31. N. Singh, K.J. Singh, K. Singh, H. Singh, Nucl. Inst. Meth. Phys. Res. 225, 305–309 (2004)

    CAS  Google Scholar 

  32. S.H. Chen, C.C. Chen, Z. Luo, C.G. Chao, Mater. Lett. 63, 1165–1168 (2009)

    CAS  Google Scholar 

  33. L. Zhang, Y. Zhu, Catal. Sci. Technol. 2, 694–706 (2012)

    CAS  Google Scholar 

  34. Y.-H. Sung, S.-D. Huang, Anal. Chim. Acta 495, 165–176 (2003)

    CAS  Google Scholar 

  35. H. Shokrollahi, Powder Technol. 235, 953–958 (2013)

    CAS  Google Scholar 

  36. C. Chen, J. Cheng, S. Yu, L. Che, Z. Meng, J. Cryst. Growth 291, 135–139 (2006)

    CAS  Google Scholar 

  37. I.H. Lone, A. Kalam, J. Ahmed, N. Alhokbany, S.M. Alshehri, T. Ahmad, J. Nanosci. Nanotechnol. 20, 3823–3831 (2020)

    CAS  PubMed  Google Scholar 

  38. S. Chakraborty, M. Pal, J. Alloys Compd. 787, 1204–1211 (2019)

    CAS  Google Scholar 

  39. S. Ruby, D.R. Rosaline, S. Inbanathan, K. Anand, G. Kavitha, R. Srinivasan, A. Umar, H. Hegazy, H. Algarni, J. Nanosci. Nanotechnol. 20, 1851–1858 (2020)

    CAS  PubMed  Google Scholar 

  40. S.E. Musavi Ghahfarokhi, M.R. Larki, I. Kazeminezhad, Vacuum (2020). https://doi.org/10.1016/j.vacuum.2019.109143

    Article  Google Scholar 

  41. C. Ponraj, G. Vinitha, J. Daniel, Int. J. Green Energy 17, 71–83 (2020)

    CAS  Google Scholar 

  42. J. Cyriac, J.C. John, N. Kalarikkal, S. Augustine, Mater Today (2020). https://doi.org/10.1016/j.matpr.2019.1012.1186

    Article  Google Scholar 

  43. A. Soam, R. Kumar, M. Singh, D. Thatoi, R.O. Dusane, J. Alloys Compd. 813, 152145 (2020)

    CAS  Google Scholar 

  44. C.V. Reddy, I.N. Reddy, K. Ravindranadh, K.R. Reddy, N.P. Shetti, D. Kim, J. Shim, T.M. Aminabhavi, J. Environ. Manag. 260, 110088 (2020)

    CAS  Google Scholar 

  45. C.V. Reddy, I.N. Reddy, V.V.N. Harish, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, Chemosphere 239, 124766 (2020)

    CAS  PubMed  Google Scholar 

  46. K.V. Karthik, C.V. Reddy, K.R. Reddy, R. Ravishankar, G. Sanjeev, R.V. Kulkarni, N.P. Shetti, A.V. Raghu, J. Mater. Sci. 30, 20646–20653 (2019)

    CAS  Google Scholar 

  47. S. M,. R. Ch Venkata, R.R. Kakarla, N.P. Shetti, R. M S, V.R. Anjanapura, Mater. Res. Exp. 6, 125502–125504 (2019)

  48. V. Navakoteswara Rao, N. Lakshmana Reddy, M. Mamatha Kumari, P. Ravi, M. Sathish, K.M. Kuruvilla, V. Preethi, K.R. Reddy, N.P. Shetti, T.M. Aminabhavi, M.V. Shankar, Appl. Catal. B 254, 174–185 (2019)

    CAS  Google Scholar 

  49. K.R. Reddy, C.H.V. Reddy, M.N. Nadagouda, N.P. Shetti, S. Jaesool, T.M. Aminabhavi, J. Environ. Manag. 238, 25–40 (2019)

    CAS  Google Scholar 

  50. A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, T.M. Aminabhavi, Carbon 149, 693–721 (2019)

    CAS  Google Scholar 

  51. Y. Wu, H. Wang, W. Tu, Y. Liu, Y.Z. Tan, X. Yuan, J.W. Chew, J. Hazard. Mater. 347, 412–422 (2018)

    CAS  PubMed  Google Scholar 

  52. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Water Air Soil Pollut. 215, 3–29 (2011)

    CAS  Google Scholar 

  53. A. AlNafiey, A. Addad, B. Sieber, G. Chastanet, A. Barras, S. Szunerits, R. Boukherroub, Chem. Eng. J. 322, 375–384 (2017)

    CAS  Google Scholar 

  54. N. Arora, A. Mehta, A. Mishra, S. Basu, Appl. Clay Sci. 151, 1–9 (2018)

    CAS  Google Scholar 

  55. M. Cao, P. Wang, Y. Ao, C. Wang, J. Hou, J. Qian, Chem. Eng. J. 264, 113–124 (2015)

    CAS  Google Scholar 

  56. V.N. Rao, N.L. Reddy, M.M. Kumari, K.K. Cheralathan, P. Ravi, M. Sathish, B. Neppolian, K.R. Reddy, N.P. Shetti, P. Prathap, T.M. Aminabhavi, M.V. Shankar, J. Environ. Manag. 248, 109246 (2019)

    CAS  Google Scholar 

  57. N.L. Reddy, V.N. Rao, M. Vijayakumar, R. Santhosh, S. Anandan, M. Karthik, M.V. Shankar, K.R. Reddy, N.P. Shetti, M.N. Nadagouda, T.M. Aminabhavi, Int. J. Hydrogen Energy 44, 10453–10472 (2019)

    CAS  Google Scholar 

  58. M.B. Tahir, G. Nabi, M. Rafique, N. Khalid, Int. J. Environ. Sci. Technol. 14, 2519–2542 (2017)

    CAS  Google Scholar 

  59. M.U. Khalid, S.R. Khan, S. Jamil, J. Inorg. Organomet. Polym. Mater. 28, 168–176 (2018)

    CAS  Google Scholar 

  60. S.R. Khan, M.U. Khalid, S. Jamil, S. Li, A. Mujahid, M.R.S.A. Janjua, J. Water Health 16, 773–781 (2018)

    PubMed  Google Scholar 

  61. S.R. Khan, S. Kanwal, M. Hashaam, S. Jamil, B. Ullah, M.R.S.A. Janjua, Mater. Res. Exp. 7, 025036 (2020)

    Google Scholar 

  62. S.R. Khan, A. Naeem, S. Jamil, A.I. Aqib, M.R.S. Ashraf Janjua, Environ Technol. (2019). https://doi.org/10.1080/09593330.09592019.01660414

    Article  PubMed  Google Scholar 

  63. M.V. Kumar, A.V. Babu, P.R. Kumar, Environ. Sci. Pollut. Res. 26, 7651–7664 (2019)

    CAS  Google Scholar 

  64. V. Sajith, C. Sobhan, G. Peterson, Adv. Mech. Eng. 2, 581407–581417 (2010)

    Google Scholar 

  65. M. Tahir, G. Nabi, A. Hassan, T. Iqbal, H. Kiran, A. Majid, J. Inorg. Organomet. Polym. Mater. 28, 738–745 (2018)

    CAS  Google Scholar 

  66. M.B. Tahir, M. Sagir, Sep. Purif. Technol. 209, 94–102 (2019)

    Google Scholar 

  67. M.B. Tahir, G. Nabi, N. Khalid, Mater. Sci. Semiconduc. Proc. 84, 36–41 (2018)

    CAS  Google Scholar 

  68. M.B. Tahir, J. Inorg. Organomet. Polym. Mater. 28, 2160–2168 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly grateful to Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan. Authors are also thankful to Community College, Post Agricultural Research Station, University of Agriculture, Faisalabad 38000, Pakistan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanza Rauf Khan.

Ethics declarations

Conflict of interest

All the authors have declared no financial and non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 958 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.R., Jamil, S., Bibi, S. et al. A Versatile Material: Perovskite Bismuth Ferrite Microparticles as a Potential Catalyst for Enhancing Fuel Efficiency and Degradation of Various Organic Dyes. J Inorg Organomet Polym 30, 3761–3770 (2020). https://doi.org/10.1007/s10904-020-01520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01520-x

Keywords

Navigation