Skip to main content
Log in

Halomethane Adsorption Studies on Silicane Sheets: A First-Principles Perception

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Silicane nanosheet (SiNS-hydrogenated version of silicene nanosheet) is employed as a base component in the current study to determine the presence of the halomethanes like fluoromethane, chloromethane, bromomethane, and iodomethane in the environment. The feasibility of the base component to sustain the physical modifications (upon the adsorption of the target vapors) is examined with the help of formation energy. In order to validate our suggestion of utilizing SiNS as a base component to detect halomethanes, electronic characteristics namely the band structure, electron density and projected density of states spectrum and surface assimilating features like the average energy gap variation, surface assimilation energy and Bader charge transfer are computed for pristine and halomethane adsorbed SiNS. The indispensable parameters estimated are compared, and the validity of our suggestion is confirmed in the current report.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    CAS  PubMed  Google Scholar 

  2. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum hall effect in graphene. Science 315, 1379 (2007)

    CAS  PubMed  Google Scholar 

  3. S. Cahangirov, M. Topsakal, E. Aktȕrk, H. Sahin, S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)

    CAS  PubMed  Google Scholar 

  4. E.C. Anota, A.B. Hernández, M. Castro, G.H. Cocoletzi, Investigating the electronic properties of silicon nanosheets by first-principles calculations. J. Mol. Model. 18, 2147–2152 (2012)

    Google Scholar 

  5. L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, Buckled silicene formation on Ir(111). Nano Lett. 13, 685–690 (2013)

    CAS  PubMed  Google Scholar 

  6. R. Fleurence, T. Friedlein, H. Ozaki, Y. Kawai, Y. Wang, Yamada-takamura, experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012)

    PubMed  Google Scholar 

  7. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 3507–3511 (2012)

    CAS  PubMed  Google Scholar 

  8. M.R. Tchalala, H. Enriquez, A.J. Mayne, A. Kara, S. Roth, M.G. Silly, A. Bendounan, F. Sirotti, T. Greber, M.A. Ali, H. Oughaddou, Formation of one-dimensional self-assembled silicon nanoribbons on Au (110) - (2 × 1). Appl. Phys. Lett. 102, 083107 (2013)

    Google Scholar 

  9. E. Durgun, S. Tongay, S. Ciraci, Silicon and III-V compound nanotubes: structural and electronic properties. Phys. Rev. B 72, 075420 (2005)

    Google Scholar 

  10. N.D. Drummond, V. Zólyomi, V.I. Falko, Electrically tunable bandgap in silicene. Phys. Rev. B 85, 075423 (2012)

    Google Scholar 

  11. P. Zhang, X.D. Li, C.H. Hu, S.Q. Wu, Z.Z. Zhu, First-principles studies of the hydrogenation effects in silicene sheets. Phys. Lett. A 376, 1230–1233 (2012)

    CAS  Google Scholar 

  12. H. Zhao, Strain and chirality effects on the mechanical and electronic properties of silicene and silicane under uniaxial tension. Phys. Lett. A 376, 3546–3550 (2012)

    CAS  Google Scholar 

  13. G. Li, J. Tan, X. Liu, X. Wang, F. Li, M. Zhao, Manifold electronic structure transition of hybrid silicane–silicene nanoribbons. Chem. Phys. Lett. 595–596, 20–24 (2014)

    Google Scholar 

  14. L.C.L.Y. Voon, E. Sandberg, R.S. Aga, A.A. Farajian, Hydrogen compounds of group-IV nanosheets. Appl. Phys. Lett. 97, 163114 (2010)

    Google Scholar 

  15. Y. Ding, Y. Wang, Electronic structures of silicene fluoride and hydride. Appl. Phys. Lett. 100, 083102 (2012)

    Google Scholar 

  16. M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V.V. Afanas, Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 98, 223107 (2011)

    Google Scholar 

  17. S. Wang, J. Yu, Tuning electronic properties of silicane layers by tensile strain and external electric field: a first-principles study. Thin Solid Films 654, 107–115 (2018)

    CAS  Google Scholar 

  18. H. Shu, S. Wang, Y. Li, J. Yip, J. Wang, Tunable electronic and optical properties of monolayer silicane under tensile strain: a many-body study. J. Chem. Phys. 141, 064707 (2014)

    PubMed  Google Scholar 

  19. J. Wang, J. Li, S. Li, Y. Liu, Hydrogen storage by metalized silicene and silicane. J. Appl. Phys. 114, 124309 (2013)

    Google Scholar 

  20. K.L. Low, W. Huang, Y. Yeo, G. Liang, Ballistic transport performance of silicane and germanane transistors. IEEE Trans Electron Dev 61, 1590–1598 (2014)

    CAS  Google Scholar 

  21. V. Nagarajan, R. Chandiramouli, Study of alcohol and aldehydes interaction on the surface of silicane nanosheet: application of density functional theory. J. Inorg. Organomet. Polym. 27, 1307–1316 (2017)

    CAS  Google Scholar 

  22. S. Dharani, V. Nagarajan, R. Chandiramouli, Nucleobases adsorption studies on silicane layer: a first-principles investigation. J. Mol. Graphics Modell. 85, 48–55 (2018)

    CAS  Google Scholar 

  23. V. Nagarajan, R. Chandiramouli, Novel method to detect the lung cancer biomarker volatiles using hydrogen vacant silicane nanosheets: a DFT investigation. Comput. Theor. Chem. 1138, 107–116 (2018)

    CAS  Google Scholar 

  24. https://produkte.linde-gas.at/sdb_konform/R41_10021722EN.pdf

  25. https://www.cdc.gov/niosh/npg/npgd0403.html

  26. https://www.osha.gov/dts/sltc/methods/partial/pv2040/2040.html

  27. https://www.cdc.gov/niosh/npg/npgd0420.html

  28. E. Nemati-Kande, M. Abbasi, M.D. Mohammadi, DFT studies on the interactions of pristine, Al and Ga-doped boron nitride nanosheets with CH3X (X=F, Cl and Br). J. Mol. Struct 1199, 126962 (2020)

    CAS  Google Scholar 

  29. M.D. Mohammadi, M. Hamzehloo, The adsorption of bromomethane onto the exterior surface of aluminium nitride, boron nitride, carbon, and silicon carbide nanotubes: A PBC-DFT, NBO, and QTAIM study. Comput. Theor. Chem. 1144, 26–37 (2018)

    Google Scholar 

  30. A.S. Rad, Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf. Sci. 645, 6–12 (2016)

    CAS  Google Scholar 

  31. K. Madih-Ayadi, A. Celzard, J.P. Coulomb, N. Dupont-Pavlovsky, J.F. Marêché, Growth mode of a dichloromethane film physisorbed on MgO: thermodynamic characterization. Surf. Sci. 443, 69–75 (1999)

    CAS  Google Scholar 

  32. H. Kawada, S. Reiff, J.H. Block, CHF3 adsorption and decomposition on clean and oxygen covered Al(111). Appl Surf Sci. 100–101, 587–591 (1996)

    Google Scholar 

  33. M.J. Van Setten, M. Giantomassi, E. Bousquet, M.J. Verstraete, D.R. Hamann, The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018)

    Google Scholar 

  34. https://www.synopsys.com/silicon/quantumatk.html

  35. J. Claudot, W.J. Kim, A. Dixit, H. Kim, T. Gould, D. Rocca, S. Lebègue, D. Lorraine, Benchmarking several van der Waals dispersion approaches for the description of intermolecular interactions. J. Chem. Phys 148, 064112 (2018)

    PubMed  Google Scholar 

  36. A.D. Becke, A new mixing of Hartee-Fock and local density functional theories. J. Chem. Phys. 98, 1372 (1993)

    CAS  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    CAS  PubMed  Google Scholar 

  38. S.F. Sousa, P.A. Fernandes, M.J. Ramos, General performance of density functionals. J. Phys. Chem. A 111, 10439–10452 (2007)

    CAS  PubMed  Google Scholar 

  39. M. Takahashi, Flat building blocks for flat silicene. Sci. Rep. 7, 10855 (2017)

    PubMed  PubMed Central  Google Scholar 

  40. R. Wang, X. Pi, Z. Ni, Y. Liu, S. Lin, M. Xu, D. Yang, Silicene oxides: formation, structures and electronic properties. Sci Rep. 3, 3507 (2013)

    PubMed  PubMed Central  Google Scholar 

  41. Q. Wu, X.-H. Wang, T.A. Niehaus, R.-Q. Zhang, Boundary and symmetry determined exciton distribution in two dimensional silicon nanosheets. J. Phys. Chem. C 118, 20070–20076 (2014)

    CAS  Google Scholar 

  42. M. Rikalo, M. Nikolić, A. Alanov, S.J. Vuković, S. Armaković, Armaković, A DFT and MD study of reactive, H2 adsorption and optoelectronic properties of graphane nanoparticles: an influence of boron doping. Mater. Chem. Phys. 241, 122329 (2020)

    CAS  Google Scholar 

  43. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Electronic properties of novel bismuthene nanosheets with adsorption studies of G-series nerve agent molecules: a DFT outlook. Phys. Lett. A 383, 125975 (2019)

    CAS  Google Scholar 

  44. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Google Scholar 

  45. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Interaction properties of benzyl chloride and chlorobenzene on violet phosphorene sheets: a first-principles perception. Comput. Theor. Chem. 1165, 112563 (2019)

    CAS  Google Scholar 

  46. J. Safaei, H. Ullah, N. Aida, M. Firdaus, M. Noh, M. Fairus, A.A. Tahir, N. Ahmad, M. Adib, Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl Catal B 234, 296–310 (2018)

    CAS  Google Scholar 

  47. Z. Ullah, A. Rauf, M. Tariq, A. Ali, K. Ayub, H. Ullah, Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases. Spectrochim. Acta, Part A 141, 71–79 (2015)

    Google Scholar 

  48. M. Soltani, M.T. Bezi, Z. Baei, Azmoodeh, Adsorption of chemical warfare agents over C24 fullerene: effects of decoration of cobalt. J. Alloys Compd. 735, 2148–2161 (2018)

    CAS  Google Scholar 

  49. A. Soltani, M.T. Baei, E.T. Lemeski, M. Shahini, Sensitivity of BN nano-cages to caffeine and nicotine molecules. Superlattices Microstruct. 76, 315–325 (2014)

    CAS  Google Scholar 

  50. S. Saravanan, V. Nagarajan, R. Chandiramouli, Adsorption insights of amine vapors on black phosphorene nanotubes: a first-principles study. Mater Res Express 6, 105518 (2019)

    CAS  Google Scholar 

  51. N. Etminan, M. Yoose, H. Raissi, M. Hakimi, Solvent effects on the stability and the electronic properties of histidine/Pd-doped single-walled carbon nanotube biosensor. J. Mol. Liq. 214, 313–318 (2016)

    CAS  Google Scholar 

  52. M. Yoose, N. Etminan, M. Zeraati, S. Mirzaei, S. Abbasi, The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants. Superlattices Microstruct. 98, 325–331 (2016)

    Google Scholar 

  53. V. Nagarajan, R. Chandiramouli, Acrylonitrile vapor adsorption studies on armchair arsenene nanoribbon based on DFT study. Appl. Surf. Sci. 494, 1148–1155 (2019)

    CAS  Google Scholar 

  54. V. Nagarajan, R. Chandiramouli, Flutamide drug interaction studies on graphdiyne nanotube: a first- principles study. Comput. Theor. Chem. 1167, 112590 (2019)

    CAS  Google Scholar 

  55. S. Mukhopadhyay, R.H. Scheicher, R. Pandey, S.P. Karna, Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J. Phys. Chem. Lett. 2, 2442–2447 (2011)

    CAS  Google Scholar 

  56. S. Mukhopadhyay, S. Gowtham, R.H. Scheicher, R. Pandey, S.P. Karna, Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Nanotechnology 21, 165703 (2010)

    PubMed  Google Scholar 

  57. S. Zhang, S. Guo, Z. Chen, Y. Wang, Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47, 982–1021 (2018)

    CAS  PubMed  Google Scholar 

  58. S. Barraza-Lopez, T.P. Kaloni, Water splits to degrade two-dimensional group-IV monochalcogenides in nanoseconds. ACS Cent. Sci. 4, 1436–1446 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Nitrogen mustard gas molecules and α-arsenene nanosheet interaction studies: a DFT insight. J. Mol. Graphics Modell. 92, 65–73 (2019)

    CAS  Google Scholar 

  60. T.P. Kaloni, P.K. Giesbrecht, G. Schreckenbach, M.S. Freund, Polythiophene: from fundamental perspectives to applications. Chem. Mater. 29, 10248–10283 (2017)

    CAS  Google Scholar 

  61. H. Sajid, K. Ayub, M. Arshad, T. Mahmood, Highly selective acridinium based cyanine dyes for the detection of DNA base pairs (adenine, cytosine, guanine and thymine). Comput. Theor. Chem. 1163, 112509 (2019)

    CAS  Google Scholar 

  62. H. Sajid, K. Ayub, T. Mahmood, A comprehensive DFT study on sensing abilities of cyclic oligothiophenes (nCT). New J. Chem. 43, 14120–14133 (2019)

    CAS  Google Scholar 

  63. A.S. Rad, K. Ayub, Adsorption of thiophene on the surfaces of X12Y12 ( X = Al, B, and Y = N, P) nanoclusters: a DFT study. J. Mol. Liq. 238, 303–309 (2017)

    CAS  Google Scholar 

  64. A.S. Rad, S.M. Aghaei, V. Poralijan, M. Peyravi, M. Mirzaei, Application of pristine and Ni-decorated B12P12 nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Comput. Theor. Chem. 1109, 1–9 (2017)

    CAS  Google Scholar 

  65. R. Chandiramouli, V. Nagarajan, Silicene nanosheet device with nanopore to identify the nucleobases: a first-principles perspective. Chem. Phys. Lett. 730, 70–75 (2019)

    CAS  Google Scholar 

  66. A.S. Rad, D. Zareyee, V.P. Foukolaei, B.K. Moghadas, M. Peyravi, Study on the electronic structure of Al12N12 and Al12P12 fullerene-like nano-clusters upon adsorption of CH3F and CH3Cl. Mol. Phys. 114, 3143–3149 (2016)

    Google Scholar 

  67. S. Madhumitha, V. Nagarajan, R. Chandiramouli, Adsorption behavior of cytosine and guanine nucleobases on graphyne nanosheets: a DFT study. Comput. Theor. Chem. 1163, 112514 (2019)

    CAS  Google Scholar 

  68. J.C. Ordaz, E.C. Anota, M.S. Villanueva, M. Castro, Possibility of a magnetic [BN fullerene: B6 cluster] À nanocomposite as a vehicle for the delivery of dapsone. New J. Chem. 41, 8045–8052 (2017)

    Google Scholar 

  69. E.C. Anota, M.S. Villanueva, E.S.M. Castro, Adsorption and possible dissociation of glucose by the [BN fullerene-B6 ]—magnetic nanocomposite. silico studies, Appl Nanosci. 8, 455–465 (2018)

    CAS  Google Scholar 

  70. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Interaction properties of explosive vapors on γ - graphyne nanosheet: a DFT outlook. Fuller Nanotub Car N. 27, 770–778 (2019)

    CAS  Google Scholar 

  71. S.F. Rastegar, A.A. Peyghan, H.R. Ghenaatian, N.L. Hadipour, NO2 detection by nanosized AlN sheet in the presence of NH3: DFT studies. Appl. Surf. Sci. 274, 217–220 (2013)

    CAS  Google Scholar 

  72. S.F. Rastegar, A.A. Peyghan, N.L. Hadipour, Response of Si- and Al-doped graphenes toward HCN: aa computational study. Appl. Surf. Sci. 265, 412–417 (2013)

    CAS  Google Scholar 

  73. V. Nagarajan, R. Chandiramouli, γ-Graphyne nanotube as nanofilter for cigarette smoke based on chemisorption properties: a first-principles study. Diamond Relat. Mater. 97, 107436 (2019)

    Google Scholar 

  74. S. Dharani, V. Nagarajan, R. Chandiramouli, Perceptions on the adsorption of COPD biomarker vapors on violet phosphorene nanosheet: a first-principles study. J. Mol. Graphics Modell. 91, 22–29 (2019)

    CAS  Google Scholar 

  75. J. Beheshtian, M.T. Baei, Z. Bagheri, A. Ahmadi, AlN nanotube as a potential electronic sensor for nitrogen dioxide. Microelectron. J. 43, 452–455 (2012)

    CAS  Google Scholar 

  76. J. Beheshtian, I. Ravaei, Toxic CO detection by Li-encapsulated fullerene-like BeO. Struct. Chem. 29, 231–241 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to Nano Mission Council (No.SR/NM/NS-1011/2017(G)) Department of Science & Technology, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvaneswari, R., Nagarajan, V. & Chandiramouli, R. Halomethane Adsorption Studies on Silicane Sheets: A First-Principles Perception. J Inorg Organomet Polym 30, 3263–3275 (2020). https://doi.org/10.1007/s10904-020-01488-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01488-8

Keywords

Navigation