Skip to main content
Log in

Highly Efficient Photocatalytic Conversion of Amine to Amide and Degradation of Methylene Blue Using BiOCl–TiO2 Nano Heterostructures

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Facile green synthesis of BiOCl–TiO2 was done using combustion technique by Ixora coccinea leaf extract as fuel source. The said material was characterized using XRD, SEM, EDX, HRTEM, SAED, FTIR, and UV-DRS. The particle size was found to be approximately 60 nm and a crystallite size of 0.3 nm from TEM. The photocatalytic activity of the material was found out using photoluminescence studies, dye degradation and photocatalytic organic conversion. The material showed excellent dye degradation capacity for methylene blue with 80% of the dye degraded under 3 hrs. The stabilisation of electron–hole pair by the heterostructure gave it the ability to perform easy degradation. The degradation kinetics have also been studied. It also showed an excellent organic conversion property with formylation yield reaching up to 96% and total conversion of the reactant molecule. The material is a potent photocatalyst due to its great efficiency and can have a remarkable role in the synthesis of important organic molecules and detoxification of environment.

Graphical Abstract

The heterostructure catalyses the conversion of amine to amides and mineralizes methylene blue under visible light condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C.J. Gerack, L. McElwee-White, Molecules 19, 7689 (2014)

    PubMed  PubMed Central  Google Scholar 

  2. I.M. Downie, M.J. Earle, H. Heaney, K.F. Shuhaibar, Tetrahedron 49, 4015 (1993)

    CAS  Google Scholar 

  3. G. Bocci, R. Danesi, A. Di Paolo, F. Innocenti, G. Allegrini, A. Falcone, A. Melosi, M. Battistoni, G. Barsanti, P.F. Conte, M. Del Tacca, Clin. Cancer Res. 6, 3032 (2000)

    CAS  PubMed  Google Scholar 

  4. R. Hett, Q.K. Fang, Y. Gao, S.A. Wald, C.H. Senanayake, Org. Process Res. Dev. 2, 96 (1998)

    CAS  Google Scholar 

  5. Y. Wang, D. Romo, Org. Lett. 4, 3231 (2002)

    CAS  PubMed  Google Scholar 

  6. S.E. Denmark, D.M. Coe, N.E. Pratt, B.D. Griedel, J. Org. Chem. 59, 6161 (1994)

    CAS  Google Scholar 

  7. S. Kobayashi, M. Yasuda, I. Hachiya, Chem. Lett. 25, 407 (1996)

    Google Scholar 

  8. R.S.L. Chapman, R. Lawrence, J.M.J. Williams, S.D. Bull, Org. Lett. 19, 4908 (2017)

    CAS  PubMed  Google Scholar 

  9. P. Gautam, P. Kathe, B.M. Bhanage, Green Chem. 19, 823 (2017)

    CAS  Google Scholar 

  10. M. Akbari, M. Hekmati, M. Sheykhan, A. Heydari, Arkivoc 2009, 123 (2009)

    Google Scholar 

  11. F.F. Blicke, C.-J. Lu, J. Am. Chem. Soc. 74, 3933 (1952)

    Google Scholar 

  12. S.B. Christensen, A.M. Hansen, H. Franzyk, J. Pept. Sci. 23, 410 (2017)

    CAS  PubMed  Google Scholar 

  13. R. Katritzky, S. Rachwal, Chem. Rev. 110, 1564 (2010)

    CAS  PubMed  Google Scholar 

  14. P. Ganapati Reddy, G.D. Kishore Kumar, S. Baskaran, Tetrahedron Lett. 41, 9149 (2000)

    CAS  Google Scholar 

  15. M. Tajbakhsh, H. Alinezhad, M. Nasrollahzadeh, T.A. Kamali, J. Colloid Interface Sci. 471, 37 (2016)

    CAS  PubMed  Google Scholar 

  16. A. Chandra Shekhar, A. Ravi Kumar, G. Sathaiah, V. Luke Paul, M. Sridhar, P. Shanthan Rao, Tetrahedron Lett. 50, 7099 (2009)

    Google Scholar 

  17. M.A. Zolfigol, G. Chehardoli, M. Dehghanian, K. Niknam, F. Shirini, A. Khoramabadi-Zad, J. Chin. Chem. Soc. 55, 885 (2008)

    CAS  Google Scholar 

  18. X. Lin, P. Lv, Q. Guan, H. Li, H. Zhai, C. Liu, Appl. Surf. Sci. 258, 7146–7153 (2012)

    CAS  Google Scholar 

  19. J. Hou, S. Jiao, H. Zhu, R.V. Kumar, J. Solid State Chem. 184, 154–158 (2011)

    CAS  Google Scholar 

  20. H.H. El-Maghrabi, E.A. Nada, F.S. Soliman, Y.M. Moustafa, A.E.S. Amin, Egypt. J. Pet. 25, 575–584 (2016)

    Google Scholar 

  21. M.S. Sadjadi, M. Mozaffari, M. Enhessari, K. Zare, Superlattices Microstruct. 47, 685–694 (2010)

    CAS  Google Scholar 

  22. Y.J. Lin, Y.H. Chang, G.J. Chen, Y.S. Chang, Y.C. Chang, J. Alloys Compd. 479, 785 (2009)

    CAS  Google Scholar 

  23. N.B. Lihitkar, M.K. Abyaneh, V. Samuel, R. Pasricha, S.W. Gosavi, S.K. Kulkarni, J. Colloid Interface Sci. 314, 310–316 (2007)

    CAS  PubMed  Google Scholar 

  24. L.G. Devi, R. Kavitha, Appl. Catal. B 140–141, 559 (2013)

    Google Scholar 

  25. L. AltIn, M. Sökmen, Z. Biyiklioʇlu, Mater. Sci. Semicond. Process. 45, 36 (2016)

    CAS  Google Scholar 

  26. C. Li, Z. Sun, Y. Xue, G. Yao, S. Zheng, Adv. Powder Technol. 27, 330 (2016)

    Google Scholar 

  27. B. Wang, F.C. de Godoi, Z. Sun, Q. Zeng, S. Zheng, R.L. Frost, J. Colloid Interface Sci. 438, 204 (2015)

    CAS  PubMed  Google Scholar 

  28. J. Jiang, K. Zhao, X. Xiao, L. Zhang, J. Am. Chem. Soc. 134, 4473 (2012)

    CAS  PubMed  Google Scholar 

  29. J. Sun, L. Li, B. He, T. Zhao, R. Wang, S. Li, Z. Yin, Z. Feng, T. Sato, CrystEngComm 16, 7564 (2014)

    CAS  Google Scholar 

  30. G. Sharma, V.K. Gupta, S. Agarwal, S. Bhogal, M. Naushad, A. Kumar, F.J. Stadler, J. Mol. Liq. 260, 342 (2018)

    CAS  Google Scholar 

  31. G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, M.R. Khan, S. Kalia, M. Bala, A. Sharma, Int. J. Biol. Macromol. 95, 484 (2017)

    CAS  PubMed  Google Scholar 

  32. G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Chem. Eng. J. 251, 413 (2014)

    CAS  Google Scholar 

  33. W. Gao, R. Razavi, A. Fakhri, Int J. Biol. Macromol. 114, 357–362 (2018)

    CAS  PubMed  Google Scholar 

  34. V. Sirajuddin, V. Gupta, G. Sharma, A. Kumar, F.J. Stadler, J. Inorg. Organomet. Polym. Mater. 29, 1171–1183 (2019)

    CAS  Google Scholar 

  35. Y. Liu, D. Sun, S. Askari, J. Patel, M. Macias-Montero, S. Mitra, R. Zhang, W.-F. Lin, D. Mariotti, P. Maguire, Sci. Rep. 5, 15765 (2015)

    PubMed  PubMed Central  Google Scholar 

  36. L.S. Reddy Yadav, K. Lingaraju, K. Manjunath, G.K. Raghu, K.H. Sudheer Kumar, G. Nagaraju, Mater. Res. Express 4, 025028 (2017)

    Google Scholar 

  37. S.B. Patil, H.S. Bhojya Naik, G. Nagaraju, R. Viswanath, S.K. Rashmi, M. Vijay kumar, Mater. Chem. Phys. 212, 351 (2018)

    CAS  Google Scholar 

  38. G. Sharma, A. Kumar, S. Sharma, S.I. Al-Saeedi, G.M. Al-Senani, A. Nafady, T. Ahamad, M. Naushad, F.J. Stadler, J. Mol. Liq. 277, 738–748 (2019)

    CAS  Google Scholar 

  39. L.V. Trandafilović, D.J. Jovanović, X. Zhang, S. Ptasińska, M.D. Dramićanin, Appl. Catal. B 203, 740 (2017)

    Google Scholar 

  40. H. Nguyen, C.C. Fu, R.S. Juang, J. Clean. Prod. 202, 413 (2018)

    CAS  Google Scholar 

  41. G. Elango, S.M. Roopan, J. Photochem. Photobiol. B 155, 34 (2016)

    CAS  PubMed  Google Scholar 

  42. R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Optik 127, 7143 (2016)

    CAS  Google Scholar 

  43. S. Kuriakose, K. Sahu, S.A. Khan, A. Tripathi, D.K. Avasthi, S. Mohapatra, Opt. Mater. 64, 47 (2017)

    CAS  Google Scholar 

  44. Y. Yang, L. Xu, H. Wang, W. Wang, L. Zhang, Mater. Des. 108, 632 (2016)

    CAS  Google Scholar 

  45. M. Dinari, M.M. Momeni, Z. Bozorgmehr, S. Karimi, J. Iran. Chem. Soc. 14, 695 (2017)

    CAS  Google Scholar 

  46. R.M. Sánchez-Albores, B.Y. Pérez-Sariñana, C.A. Meza-Avendaño, P.J. Sebastian, O. Reyes-Vallejo, J.B. Robles-Ocampo, Catal. Today (2019). https://doi.org/10.1016/j.cattod.2019.07.044

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors Dr. Aatika Nizam acknowledge the support from CHRIST (Deemed to be University) for funding this research (MRP # MRPDSC-1722), to Advanced Facility For Microscopy And Microanalysis (AFMM), IISc for providing us with SEM characterization, to Sophisticated Test and Instrumentation Centre (STIC), Cochin for providing us with HRTEM and SAED characterization, one of the authors Dr. G. Nagaraju thanks DST-SERB (SB/FT/CS-083/2012) Govt of India, New Delhi for providing characterization techniques. We also like to thank Divya H from Siddaganga Institute of Technology, Tumakuru for her help in characterization of the synthesised material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aatika Nizam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warrier, V.G., Nizam, A. & Nagaraju, G. Highly Efficient Photocatalytic Conversion of Amine to Amide and Degradation of Methylene Blue Using BiOCl–TiO2 Nano Heterostructures. J Inorg Organomet Polym 30, 3143–3157 (2020). https://doi.org/10.1007/s10904-020-01471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01471-3

Keywords

Navigation