Skip to main content

Synthesis, Characterization and Applications of a Novel Platinum-Based Nanoparticles: Catalytic, Antibacterial and Cytotoxic Studies


The facile one-pot synthesis method was used to synthesize platinum nanoparticles (Doxy-Pt (0) NPs) by reduction method with doxycycline drug as reducing and capping agent. The combined platinum nanoparticles were carefully chosen for catalytic reduction of paracetamol as well as used against antimicrobial and anticancer actions with the well diffusion process and by measuring the zone of inhibition in mm against Gram-positive (S. aureus and S. pyogenes) and Gram-negative (E. coli and S. typhimurium). The Ultraviolet–Visible-absorption spectroscopy technique was used to endorse accumulation of (Doxy-Pt (0) NPs) using the distinctive Plasmon absorption maxima at 264 nm. Another technique of X-ray powder diffraction (XRD) pattern was used to confirm the crystalline nature of the prepared Pt (0) NPs. Transmission electron microscopy (TEM) was used to study the particle size of the prepared Pt (0) NPs with a size range of 10–20 nm. The catalytic study showed that the reduction is ~ 99.9% of paracetamol that was consummate in a small period of reaction time (60 s) by competent doxycycline based platinum nanoparticles. The value of K is calculated (rate constant) value for paracetamol catalytic reduction was achieved 7 × 10−2 by drawing InC versus time (s) and the results showed that the reaction is of the first command kinetics. Furthermore, the reduction in breast cancer cell viability and proliferation via PtNPs was found higher as compare to the normal breast cells (CRL-4010). Therefore, the newly prepared Doxy-Pt (0) NPs had a marvelous catalytic, antibacterial and anticancerous action as a catalyst and drug material. The recent discoveries are similarly extendable for the preservation of the aquatic situation in contradiction of the pollution produced by paracetamol, microbial and cancerous actions via a superficial, highly inexpensive, quick and effectual technique.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

All data supporting the conclusions of this article are included within the article.



Doxycycline derived platinum nanoparticles


Ultraviolet–Visible spectroscopy


X-ray diffraction


Transmission electron microscopy

S. aureus :

Staphylococcus aureus

S. pyogens :

Streptococcus pyogenes

E. coli :

Escherichia coli

S. typhimurium :

Salmonella typhimurium


Nonsteroidal anti-inflammatory drugs


Colony-forming unit


  1. E.R. Cooper, T.C. Siewicki, K. Phillips, Preliminary risk assessment database and risk ranking of pharmaceuticals in the environment. Sci. Total Environ. 398, 26–33 (2008)

    CAS  Article  Google Scholar 

  2. Y. Junejo, M. Safdar, M.A. Akhtar et al., Synthesis of tobramycin stabilized silver nanoparticles and its catalytic and antibacterial activity against pathogenic bacteria. J. Inorg. Organomet. Polym. 29, 111 (2019)

    CAS  Article  Google Scholar 

  3. F. Méndez-Arriaga, R. Torres-Palma, C. Pétrier, S. Esplugas, J. Gimenez, C. Pulgarin, Ultrasonic treatment of water contaminated with ibuprofen. Water Res. 42, 4243–4248 (2008)

    Article  Google Scholar 

  4. T. Takagi, C. Ramachandran, M. Bermejo, S. Yamashita, L.X. Yu, G.L. Amidon, A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol. Pharm. 3, 631–643 (2006)

    CAS  Article  Google Scholar 

  5. R. Hirsch, T. Ternes, K. Haberer, K.-L. Kratz, Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 225, 109–118 (1999)

    CAS  Article  Google Scholar 

  6. K. Kümmerer, R. Alexy, J. Hüttig, A. Schöll, Standardized tests fail to assess the effects of antibiotics on environmental bacteria. Water Res. 38, 2111–2116 (2004)

    Article  Google Scholar 

  7. A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 387, 1225–1234 (2007)

    CAS  Article  Google Scholar 

  8. X. Li, G. Li, A review: pharmaceutical wastewater treatment technology and research in China. 2015 Asia-Pacific Energy Equipment Engineering Research Conference. (Atlantis Press, 2015)

  9. A.R. Shah, H. Tahir, T. Yasmeen, H.M. Kifayatullah, Electro-Fenton oxidation of simulated pharmaceutical waste: optimization using central composite design. Int. J. Environ. Sci. Nat. Res. 3(5), 555623 (2017)

    Google Scholar 

  10. A.M. Abdulla, O.I. Haidar, Spectrophotometric determination of cerium in some ore in Kurdistan Region-Iraq. J. Nat. Sci. Res. 5, 24 (2015)

    Google Scholar 

  11. M. Deska, B. Kończak, Immobilized fungal laccase as” green catalyst” for the decolourization process–state of the art. Process Biochem. (2019).

    Article  Google Scholar 

  12. S. Chen, K. Kimura, Synthesis of thiolate-stabilized platinum nanoparticles in protolytic solvents as isolable colloids. J. Phys. Chem. B 105, 5397–5403 (2001)

    CAS  Article  Google Scholar 

  13. P.J. Kulesza, M. Chojak, K. Karnicka, K. Miecznikowski, B. Palys, A. Lewera et al., Network films composed of conducting polymer-linked and polyoxometalate-stabilized platinum nanoparticles. Chem. Mater. 16, 4128–4134 (2004)

    CAS  Article  Google Scholar 

  14. H. Song, R.M. Rioux, J.D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass et al., Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 128, 3027–3037 (2006)

    CAS  Article  Google Scholar 

  15. L. Obreja, D. Pricop, N. Foca, V. Melnig, Platinum nanoparticles synthesis by sonoelectrochemical methods. Mater. Plast 47, 42–47 (2010)

    CAS  Google Scholar 

  16. A. Abedini, A.R. Daud, M.A.A. Hamid, N.K. Othman, E. Saion, A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett. 8, 474 (2013)

    Article  Google Scholar 

  17. K.S. Siddiqi, A. Husen, Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res. Lett. 11, 482 (2016)

    Article  Google Scholar 

  18. M.S. Akhtar, J. Panwar, Y.-S. Yun, Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem. Eng. 1, 591–602 (2013)

    CAS  Article  Google Scholar 

  19. K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical Properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym. 29, 203–212 (2019)

    CAS  Article  Google Scholar 

  20. R. Cai, Y. Du, D. Yang, G. Jia, B. Zhu, B. Chen et al., Free-standing 2D nanorafts by assembly of 1D nanorods for biomolecule sensing. Nanoscale Nanoscale 2019(11), 12169 (2019)

    Article  Google Scholar 

  21. V.N. Rao, N.L. Reddy, M.M. Kumari, P. Ravi, M. Sathish, K.M. Kuruvilla, V. Preethi, K.R. Reddy, N.P. Shetti, T.M. Aminabhavi, M.V. Shankar, Photocatalytic recovery of H2 from H2S containing wastewater: surface and interface control of photo-excitons in Cu2S@TiO2 core-shell nanostructures. Appl. Catal. B 254, 174–185 (2019)

    Article  Google Scholar 

  22. C. Venkata Reddy, I. Neelakanta Reddy, B. Akkinepally, K. Raghava Reddy, J. Shim, Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode. J. Alloys Compd. 814, 152349 (2020)

    CAS  Article  Google Scholar 

  23. Y. Junejo, A. Baykal, Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles. Turk. J. Chem. 38, 765–774 (2014)

    CAS  Article  Google Scholar 

  24. M. Safdar, Y. Junejo, A. Balouch, Efficient degradation of organic dyes by heterogeneous cefdinir derived silver nanocatalyst. J. Ind. Eng. Chem. 31, 216–222 (2015)

    CAS  Article  Google Scholar 

  25. K.C. Nguyen, V.L. Seligy, A.F. Tayabali, Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa. Nanotoxicology 7, 202–211 (2013)

    CAS  Article  Google Scholar 

  26. D.V. Ca, L. Sun, J.A. Cox, Optimization of the dispersion of gold and platinum nanoparticles on indium tin oxide for the electrocatalytic oxidation of cysteine and arsenite. Electrochim. Acta 51, 2188–2194 (2006)

    CAS  Article  Google Scholar 

  27. I. GyoáKoo, M. SeokáLee, J. HeeáShim, J. HwanáAhn, W. MooáLee, Platinum nanoparticles prepared by a plasma-chemical reduction method. J. Mater. Chem. 15, 4125–4128 (2005)

    Article  Google Scholar 

  28. Y. Junejo, S. Sirajuddin, A. Baykal, M. Safdar, A. Balouch, A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye. Appl. Surf. Sci. 290, 499–503 (2014)

    CAS  Article  Google Scholar 

  29. B. Bachiller-Baeza, A. Guerrero-Ruiz, I. Rodríguez-Ramos, Ruthenium-supported catalysts for the stereoselective hydrogenation of paracetamol to 4-trans-acetamidocyclohexanol: effect of support, metal precursor, and solvent. J. Catal. 229, 439–445 (2005)

    CAS  Article  Google Scholar 

  30. O. Nasr, O. Mohamed, A.-S. Al-Shirbini, A.-M. Abdel-Wahab, Photocatalytic degradation of acetaminophen over Ag, Au and Pt loaded TiO2 using solar light. J. Photochem. Photobiol. A 374, 185–193 (2019)

    CAS  Article  Google Scholar 

  31. S. Khezrianjoo, H. Revanasiddappa, Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of Metanil Yellow aqueous solutions by ZnO catalyst. Chem. Sci. J. (2012)

  32. S. Gurunathan, J.W. Han, D.-N. Kwon, J.-H. Kim, Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett. 9, 373 (2014)

    Article  Google Scholar 

  33. A.F. Halbus, T.S. Horozov, V.N. Paunov, Controlling the antimicrobial action of surface modified magnesium hydroxide nanoparticles. Biomimetics 4, 41 (2019)

    CAS  Article  Google Scholar 

  34. A. Misra, S. Jain, D. Kishore, V. Dave, K.R. Reddy, V. Sadhu, J. Dwivedi, S. Sharma, A facile one pot synthesis of novel pyrimidine derivatives of 1, 5-benzodiazepines via domino reaction and their antibacterial evaluation. J. Microbiol. Methods 163, 105648 (2019)

    Article  Google Scholar 

  35. J. Sathiyamoorthy, N. Sudhakar, In vitro cytotoxicity and apoptotic assay in HT-29 cell line using Ficus hispida Linn: Leaves extract. Pharmacogn Mag. 13:S756 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. J.C. Mohan, G. Praveen, K. Chennazhi, R. Jayakumar, S. Nair, Functionalised gold nanoparticles for selective induction of in vitro apoptosis among human cancer cell lines. J. Exp. Nanosci. 8, 32–45 (2013)

    CAS  Article  Google Scholar 

  37. A. Chompoosor, K. Saha, P.S. Ghosh, D.J. Macarthy, O.R. Miranda, Z.J. Zhu et al., The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 6, 2246–2249 (2010)

    CAS  Article  Google Scholar 

  38. S.Y. Choi, S. Jeong, S.H. Jang, J. Park, J.H. Park, K.S. Ock et al., In vitro toxicity of serum protein-adsorbed citrate-reduced gold nanoparticles in human lung adenocarcinoma cells. Toxicol. In Vitro 26, 229–237 (2012)

    CAS  Article  Google Scholar 

Download references


Dr. Yasmeen Junejo would like to thank HEC-Pakistan for providing Assistant Professor (IPFP) position and Dr. Ghulam Shabir, Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan for giving us bacterial strains and the necessary facilities.


The study was supported by departmental research grant.

Author information

Authors and Affiliations



YJ, and MS designed and performed the experiments. SL and RAK performed the measurements. YJ and MS analyzed the measurement data. MS finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yasmeen Junejo.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safdar, M., Ozaslan, M., Khailany, R.A. et al. Synthesis, Characterization and Applications of a Novel Platinum-Based Nanoparticles: Catalytic, Antibacterial and Cytotoxic Studies. J Inorg Organomet Polym 30, 2430–2439 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Platinum nanoparticles
  • Synthesis
  • Characterization
  • Degradation of paracetamol
  • Antimicrobial activity
  • Cytotoxicity