Skip to main content
Log in

Construction of Bis(2,6-bis(1-methylbenzimidazol-2-yl)pyridine)iron(II) Coordination Polymer for Incorporation of Magnetic Function

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Low-dimensional coordination polymers are attractive materials because the infinite combination of metal ions and ligands allows us to produce various chemical structures and functions. Spin crossover (SCO) is one of the curious magnetic functions because the electronic state of metal complex can be controlled by external stimuli. It is expected that the introduction of SCO-active metal complex to a coordination polymer will contribute to produce a multifunctional material. In this research, a coordination polymer composed of ferrous ion and a ligand with 2,6-bis(1-methylbenzimidazol-2-yl)pyridine (mbzimpy) ligating groups \(([\mathbf{FeL}_\mathrm{mbi}]_n)\) was synthesized to incorporate SCO activity. The polymer was synthesized using a liquid–liquid interfacial reaction and a one-phase reaction, and was obtained as a film and a powder, respectively. Electrochemical and spectroscopic measurements revealed the formation of \([\mathrm{Fe}(\mathrm{mbzimpy})_2]\) complex. The magnetic susceptibility measurement displayed the partial SCO of \([\mathbf{FeL}_\mathrm{mbi}]_n\) polymer from 350 K to 250 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.C. Bentz, S.M. Cohen, Supramolecular metallopolymers: from linear materials to infinite networks. Angew. Chem. Int. Ed. 57, 14992–15001 (2018)

    Article  CAS  Google Scholar 

  2. E. Loukopoulos, G.E. Kostakis, Review: recent advances of one-dimensional coordination polymers as catalysts. J. Coord. Chem. 71, 371–410 (2018)

    Article  CAS  Google Scholar 

  3. M. Zhao, Y. Huang, Y. Peng, Z. Huang, Q. Ma, H. Zhang, Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 47, 6267–6295 (2018)

    Article  CAS  Google Scholar 

  4. H. Maeda, R. Sakamoto, H. Nishihara, Coordination programming of two-dimensional metal complex frameworks. Langmuir 32, 2527–2538 (2016)

    Article  CAS  Google Scholar 

  5. H. Maeda, R. Sakamoto, H. Nishihara, Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes. Coord. Chem. Rev. 346, 139–149 (2017)

    Article  CAS  Google Scholar 

  6. R. Sakamoto, K. Takada, T. Pal, H. Maeda, T. Kambe, H. Nishihara, Coordination nanosheets (CONASHs): strategies, structures and functions. Chem. Commun. 53, 5781–5801 (2017)

    Article  CAS  Google Scholar 

  7. R. Matsuoka, R. Sakamoto, T. Kambe, K. Takada, T. Kusamoto, H. Nishihara, Ordered alignment of a one-dimensional \(\pi \)-conjugated nickel bis(dithiolene) complex polymer produced via interfacial reactions. Chem. Commun. 50, 8137–8139 (2014)

    Article  CAS  Google Scholar 

  8. I.-F. Chen, C.-F. Lu, W.-F. Su, Highly conductive 2D metal-organic framework thin film fabricated by liquid-liquid interfacial reaction using one-pot-synthesized benzenehexathiol. Langmuir 34, 15754–15762 (2018)

    Article  CAS  Google Scholar 

  9. R. Dong, P. Hang, H. Arora, M. Ballabio, M. Karakus, Z. Zhang, C. Shekhar, P. Adler, PSt Petkov, Q. Erbe, S.C.B. Mannsfeld, C. Felser, T. Heine, M. Bonn, X. Feng, R. Cánovas, High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat. Mater. 17, 1027–1032 (2018)

    Article  CAS  Google Scholar 

  10. E.J. Devid, P.N. Martinho, M.V. Kamalakar, I. S̆alitos̆, Ŭ. Prendergast, J.F. Dayen, V. Meded, T. Lemmma, R. González-Prieto, F. Evers, T. Keyes, M. Ruben, B. Doudin, S.J. Molen, Spin transition in arrays of gold nanoparticles and spin crossover molecules. ACS Nano 9, 4496–4507 (2015)

    Article  CAS  Google Scholar 

  11. X. Zhang, S. Mu, G. Chastanet, N. Daro, T. Palamarciuc, P. Rosa, J.F. Létard, J. Liu, G.E. Sterbinsky, D.A. Arena, C. Etrillard, B. Kundys, B. Doudin, P.A. Dowben, Complexities in the molecular spin crossover transition. J. Phys. Chem. C 119, 16293–16302 (2015)

    Article  CAS  Google Scholar 

  12. H.L.C. Feltham, C. Johnson, A.B.S. Elliott, K.C. Gordon, M. Albrecht, S. Brooker, “Tail” tuning of iron(II) spin crossover temperature by 100 K. Inorg. Chem. 54, 2902–2909 (2015)

    Article  CAS  Google Scholar 

  13. C. Shao, L. Shi, L. Yin, B.-L. Wang, Z.X. Wang, Y.-Q. Zhang, X.-Y. Wang, Reversible on-off switching of both spin crossover and single-molecule magnet behaviours via a crystal-to-crystal transformation. Chem. Sci. 9, 7986–7991 (2018)

    Article  CAS  Google Scholar 

  14. Y. Sunatsuki, M. Sakata, S. Matsuzaki, N. Matsumoto, M. Kojima, Thermal and pressure induced spin crossover of a novel iron(III) complex with a tripodal ligand involving three imidazole groups. Chem. Lett. 30, 1254–1255 (2001)

    Article  Google Scholar 

  15. P. Parida, E.A. Basheer, S.K. Pati, Cyclopentadienyl-benzene based sandwich molecular wires showing efficient spin filtering, negative differential resistance, and pressure induced electronic transitions. J. Mater. Chem. 22, 14916–14924 (2012)

    Article  CAS  Google Scholar 

  16. D. Pinkowicz, M. Rams, M. Mis̆ek, K.V. Kamenev, H. Tomkowiak, A. Katrusiak, B. Sieklucka, Enforcing multifunctionality: a pressure-induced spin-crossover photomagnet. J. Am. Chem. Soc 137, 8795–8802 (2015)

    Article  CAS  Google Scholar 

  17. J.L. Her, Y.H. Matsuda, M. Nakano, Y. Niwa, Y. Inada, Magnetic field-induced spin-crossover transition in [Mn\(^{\rm III}\)(taa)] studied by X-ray absorption spectroscopy. J. Appl. Phys. 111, 053921 (2012)

    Article  Google Scholar 

  18. K. Takahashi, Y. Hasegawa, R. Sakamoto, M. Nishikawa, S. Kume, E. Nishibori, H. Nishihara, Solid-state light-driven light-induced spin change at ambient temperatures in bis(dipyrazolylstyrylpyridine)iron(II) complexes. Inorg. Chem. 51, 5188–5198 (2012)

    Article  CAS  Google Scholar 

  19. N. Hirosawa, Y. Oso, T. Ishida, Spin crossover and light-induced excited spin-state trapping observed for an iron(II) complex chelated with tripodal tetrakis(2-pyridyl)metane. Chem. Lett. 41, 716–718 (2012)

    Article  CAS  Google Scholar 

  20. P. Stock, E. Deck, S. Hohnstein, J. Korzekwa, K. Meyer, F.W. Heinemann, F. Breher, G. Hörner, Molecular spin crossover in slow motion: light-induced spin-state transitions in trigonal prismatic iron(II) complexes. Inorg. Chem. 55, 5254–5265 (2016)

    Article  CAS  Google Scholar 

  21. A.R. Katritzky, G.W. Rewcastle, W.Q. Fan, Synthesis of 2-substituted imidazoles and benzimidazoles and of 3-substituted pyrazoles by lithiation of N-(dialkylamino)methyl heterocycles. J. Org. Chem. 53, 5685–5689 (1988)

    Article  CAS  Google Scholar 

  22. S. Vaduvescu, P.G. Potvin, Linear multinuclear RuII photosensitizers. Eur. J. Inorg. Chem. 2004, 1763–1769 (2004)

    Article  Google Scholar 

  23. N.M.N. Shivakumaraiah, Gowda, studies on palladium(II) complexes containing multidentate N-heterocycles. J. Chem. Res. 2005, 505–507 (2005)

    Article  Google Scholar 

  24. I.C. Berdiell, R. Kulmaczewski, O. Cespedes, M.A. Halcrow, An incomplete spin transition associated with a \({Z^\prime }=1\rightarrow {Z^\prime }=24\) crystallographic symmetry breaking. Chem. Eur. J. 24, 5055–5059 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the JSPS KAKENHI Grant Number 16K17889. This work was also supported by JST CREST Grant JPMJCR15F2. We thank the Research Hub Advanced Nano Characterization (School of Engineering, The University of Tokyo) for conducting the X-ray photoelectron spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nishihara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, H., Bajpayee, A., Kusamoto, T. et al. Construction of Bis(2,6-bis(1-methylbenzimidazol-2-yl)pyridine)iron(II) Coordination Polymer for Incorporation of Magnetic Function. J Inorg Organomet Polym 30, 147–152 (2020). https://doi.org/10.1007/s10904-019-01375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01375-x

Keywords

Navigation