Polyacrylonitrile and Hybrid SBA-15: A Robust Composite Material for Use as Copper (II) Adsorbent in Flow Conditions

Abstract

Novel processes for treating industrial wastewater containing metals are needed nowadays in order to meet environmentally safe water treatment standards. Attention has been paid to innovative adsorbents that permit to trap and subsequently desorb ions, permitting their selective recovery. In this work, we design a robust porous exchange matrix able to adsorb Cu (II) (often found in industrial wastewater), that meets the following requirements: (a) to perform copper desorption with a minimum condition modification, (b) to preconcentrate already desorbed ions, (c) to be reusable, and (d) to be able to work in flow condition. A hybrid mesoporous material matrix (HMM) composed of a hybrid mesoporous filler embedded into a highly accessible polymer was chosen as adsorbent. The mesoporous filler is mesoporous silica (SBA-15) chemically modified through post-grafting with amino groups. The composite material was prepared by combining the adsorbent material and polyacrylonitrile (PAN). The system could be easily processed in columns of fixed bed in order to perform copper adsorption–desorption. Under these conditions, a Cu (II) loading of 1.2 × 10−3 mol per gram of adsorbent material was obtained. Copper desorption was performed in HCl 0.1 M, achieving a final concentration at least 5 times higher than the initial one. The material was reused 10 times without losing its adsorption capacity, demonstrating its potentiality for water treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    R. Das, C.D. Vecitis, A. Schulze, B. Cao, A.F. Ismail, X. Lu, J. Chen, S. Ramakrishna, Chem. Soc. Rev. 46, 6946–7020 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    S.A. Al-Saydeh, M. El-Naas, J. Zaidi, J. Ind. Eng. Chem. 56, 35–44 (2017)

    Article  CAS  Google Scholar 

  3. 3.

    S. Babel, T.A. Kurniawan, J. Hazard. Mater. 97, 219–243 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    E. Chmielewská, in Handbook of Natural Zeolites, ed. by V.J. Inglezakis, A.A. Zorpas (Bentham Science, Oak Park, 2012), pp. 436–452

    Google Scholar 

  5. 5.

    E. Dana, A. Sayari, Chem. Eng. J. 167, 91–98 (2011)

    Article  CAS  Google Scholar 

  6. 6.

    M.V. Lombardo, M. Videla, A. Calvo, F.G. Requejo, G.J.A.A. Soler-Illia, J. Hazard. Mater. 223–224, 53–62 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    A.V. Bordoni, M.V. Lombardo, A.E. Regazzoni, G.J.A.A. Soler-Illia, A. Wolosiuk, J. Colloid Interface Sci. 450, 316–324 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    L. Nicole, C. Boissière, D. Grosso, A. Quach, C. Sanchez, J. Mater. Chem. 15, 3598–3627 (2005)

    Article  CAS  Google Scholar 

  9. 9.

    D. Zhao, Y. Wan, W. Zhou, Ordered Mesoporous Materials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013)

    Google Scholar 

  10. 10.

    B. Lebeau, F. Gaslain, C. Fernandez-Martin, F. Babonneau, in Ordered Porous Solids, ed. by V. Valtchev, S. Mintova, M. Tsapatsis (Elsevier, New York, 2009), pp. 283–308

    Google Scholar 

  11. 11.

    C. Luo, J. Wang, P. Jia, Y. Liu, J. An, B. Cao, K. Pan, Chem. Eng. J. 262, 775–784 (2015)

    Article  CAS  Google Scholar 

  12. 12.

    E. Da’na, Microporous Mesoporous Mater. 247, 145–157 (2017)

    Article  CAS  Google Scholar 

  13. 13.

    M. Wiśniewska, M. Wawrzkiewicz, A. Wołowicz, O. Goncharuk, in Nanosized Oxides of Different Compositions as Adsorbents for Hazardous Substances Removal from Aqueous Solutions and Wastewaters, ed. by O. Fesenko, L. Yatsenko. Nanooptics, Nanophotonics, Nanostructures, and Their Applications. NANO 2017, Springer Proceedings in Physics, vol 210 (Springer, Cham, 2018)

    Google Scholar 

  14. 14.

    A. Nilchi, S.R. Garmarodi, S.J. Darzi, J. Appl. Polym. Sci. 119, 3495–3503 (2011)

    Article  CAS  Google Scholar 

  15. 15.

    X. Zhang, S. Yang, B. Yu, Q. Tan, X. Zhang, H. Cong, Sci. Rep. 8, 1260 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    C. Chen, F. Li, Z. Guo, X. Qu, J. Wang, J. Zhang, Colloids Surf. A 568, 334–344 (2019)

    Article  CAS  Google Scholar 

  17. 17.

    K.Z. Elwakeel, A.A. El-Bindary, E.Y. Kouta, E. Guibal, Chem. Eng. J. 332, 727–736 (2018)

    Article  CAS  Google Scholar 

  18. 18.

    Y. Park, Y.C. Lee, W.S. Shin, S.J. Choi, Chem. Eng. J. 162, 685–695 (2010)

    Article  CAS  Google Scholar 

  19. 19.

    F. Šebesta, J. Radioanal. Nucl. Chem. 220, 77–88 (1997)

    Article  Google Scholar 

  20. 20.

    E. Da’na, A. Sayari, Desalination 277, 54–60 (2011)

    Article  CAS  Google Scholar 

  21. 21.

    T. Callan, J.A.R. Henderson, The Analyst 54, 650–653 (1929)

    Article  CAS  Google Scholar 

  22. 22.

    S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density, 1st edn. (Springer, Netherlands, 2004), p. 120

    Google Scholar 

  23. 23.

    P. Innocenzi, J. Non-Cryst. Solids 316, 309–319 (2003)

    Article  CAS  Google Scholar 

  24. 24.

    K.T.a.T.T. S. Kinugasa, http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi

  25. 25.

    G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd edn. (Wiley, New York, 2001)

    Google Scholar 

  26. 26.

    J.M. Rosenholm, M. Lindén, Chem. Mater. 19, 5023–5034 (2007)

    Article  CAS  Google Scholar 

  27. 27.

    A. Walcarius, L. Mercier, J. Mater. Chem. 20, 4478–4511 (2010)

    Article  CAS  Google Scholar 

  28. 28.

    J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, J. Hazard. Mater. 163, 213–221 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    M.V. Lombardo, M. Mirenda, A.V. Bordoni, A. Wolosiuk, A.E. Regazzoni, J. Colloid Interface Sci. 507, 139–144 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids (Principles, Methodology and Applications, Elsevier, 1999)

    Google Scholar 

  31. 31.

    I. Langmuir, J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  32. 32.

    S. Iftekhar, D.L. Ramasamy, V. Srivastava, M.B. Asif, M. Sillanpää, Chemosphere 204, 413–430 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    E. Da’na, A. Sayari, Desalination 285, 62–67 (2012)

    Article  CAS  Google Scholar 

  34. 34.

    H. Yang, R. Xu, X. Xue, F. Li, G. Li, J. Hazard. Mater. 152, 690–698 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    L. Bois, A. Bonhommé, A. Ribes, B. Pais, G. Raffin, F. Tessier, Colloids Surf. A 221, 221–230 (2003)

    Article  CAS  Google Scholar 

  36. 36.

    A. Sayari, S. Hamoudi, Y. Yang, Chem. Mater. 17, 212–216 (2005)

    Article  CAS  Google Scholar 

  37. 37.

    W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edn. (Wiley, New Yrok, 1995)

    Google Scholar 

  38. 38.

    H. Irving, R.J.P. Williams, Nature 162, 746–747 (1948)

    Article  CAS  Google Scholar 

  39. 39.

    A.L.-T. Pham, D.L. Sedlak, F.M. Doyle, Appl. Catal. B 126, 258–264 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    M. Etienne, A. Walcarius, Talanta 59, 1173–1188 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    T. Ikegami, N. Tanaka, Annu. Rev. Anal. Chem. 2016(9), 317–342 (2016)

    Article  CAS  Google Scholar 

  42. 42.

    H.H. Someda, A.A. ElZahhar, M.K. Shehata, H.A. El-Naggar, Sep. Purif. Technol. 29, 53–61 (2002)

    Article  CAS  Google Scholar 

  43. 43.

    G. Zong, H. Chen, R. Qu, C. Wang, N. Ji, J. Hazard. Mater. 186, 614–621 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    T. Usami, T. Itoh, H. Ohtani, S. Tsuge, Macromolecules 23, 2460–2465 (1990)

    Article  CAS  Google Scholar 

  45. 45.

    H. Faghihian, M. Iravani, M. Moayed, M. Ghannadi-Maragheh, Chem. Eng. J. 222, 41–48 (2013)

    Article  CAS  Google Scholar 

  46. 46.

    J.D. Law, R.S. Herbst, T.A. Todd, Sep. Sci. Technol. 37, 1353–1373 (2002)

    Article  CAS  Google Scholar 

  47. 47.

    A. Shahbazi, H. Younesi, A. Badiei, Chem. Eng. J. 168, 505–518 (2011)

    Article  CAS  Google Scholar 

  48. 48.

    M.A.S.D. Barros, P.A. Arroyo, E.A. Silva, General aspects of aqueous sorption process in fixed beds, in Mass Transfer—Advances in Sustainable Energy and Environment Oriented Numerical Modeling, ed. by H. Nakajima (InTech, Rijeka, 2013), p. Ch. 14

    Google Scholar 

  49. 49.

    A. Heidari, H. Younesi, Z. Mehraban, Chem. Eng. J. 153, 70–79 (2009)

    Article  CAS  Google Scholar 

  50. 50.

    D. Bruhwiler, Nanoscale 2, 887–892 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    J. Kobler, K. Möller, T. Bein, ACS Nano 2, 791–799 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    A.V. Bordoni, M.V. Lombardo, A. Wolosiuk, RSC Adv. 6, 77410–77426 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank ABTLUS for funding access to the LNLS synchrotron facility (proposal D11A-SAXS1-13405). Work funded by ANPCyT (PICT 2012-2087, 2015-3516, FONARSEC FSNANO 2010/007). MVL thanks CONICET and Rhein Chemie Argentina for a graduate student fellowship. Authors thank Dr. M.C. Marchi for her assistance in SEM measurements, and Dr. Paula C. Angelomé for her valuable support to this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. V. Lombardo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 588 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lombardo, M.V., Soler-Illia, G.J.A.A. Polyacrylonitrile and Hybrid SBA-15: A Robust Composite Material for Use as Copper (II) Adsorbent in Flow Conditions. J Inorg Organomet Polym 30, 1206–1217 (2020). https://doi.org/10.1007/s10904-019-01291-0

Download citation

Keywords

  • Copper adsorption
  • Amino-functionalized SBA-15
  • Composite material
  • Polyacrylonitrile
  • Wastewater treatment