The Influence of pH on Phase and Morphology of BiOIO3 Nanoplates Synthesized by Microwave-Assisted Method and Their Photocatalytic Activities

  • Panudda Patiphatpanya
  • Anukorn PhuruangratEmail author
  • Somchai Thongtem
  • Phattranit Dumrongrojthanath
  • Titipun ThongtemEmail author


The influence of precursor solution pH on phase, morphology and optical properties of BiOIO3 was investigated in this research. The products were synthesized in the solutions with the pH of 2, 3, 4, 5 and 6 by a 360 W microwave (2.45 GHz) at 5 min/cycle for 12 cycles (60 min) and were well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, UV–visible spectroscopy, photoluminescence spectroscopy and Brunauer–Emmett–Teller surface area analysis. According to the analytical results, pure BiOIO3 nanoplates were synthesized at the pH of 2 and 3 and were transformed into pure Bi2O3 nanoparticles at the pH of 6. The photocatalytic activities of products were studied through the degradation of rhodamine B solutions under visible light irradiation. The as-synthesized BiOIO3 nanoplates with band gap energy of 2.90 eV synthesized at the pH of 3 have the highest decolorization efficiency of 97.9% and pseudo-first-order degradation rate of 0.0442 min−1 within 60 min.


BiOIO3 Microwave-assisted method Photocatalysis Spectroscopy 



We wish to thank Thailand Research Fund (TRF) for providing financial support through the Royal Golden Jubilee Ph.D. Program, and Center of Excellence in Materials Science and Technology, Chiang Mai University, for financial support under the Administration of Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand.


  1. 1.
    H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014)CrossRefPubMedGoogle Scholar
  2. 2.
    C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)CrossRefGoogle Scholar
  3. 3.
    M.R. Delsouz Khaki, M.S. Shafeeyan, A.A. Abdul Raman, W.M. Ashri Wan Daud, Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J. Mol. Liq. 258, 354–365 (2018)CrossRefGoogle Scholar
  4. 4.
    Z. Xing, J. Zhang, J. Cui, J. Yin, T. Zhao, J. Kuang, Z. Xiu, N. Wan, W. Zhou, Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal. B 225, 452–467 (2018)CrossRefGoogle Scholar
  5. 5.
    A.G. Rana, W. Ahmad, A. Al-Matar, R. Shawabkeh, Z. Aslam, Synthesis and characterization of Cu–Zn/TiO2 for the photocatalytic conversion of CO2 to methane. Environ. Technol. 38, 1085–1092 (2017)CrossRefPubMedGoogle Scholar
  6. 6.
    X. Zhou, N. Liu, P. Schmuki, Photocatalysis with TiO2 nanotubes: “Colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal. 7, 3210–3235 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Dong, J. Ye, D. Ariyanti, Y. Wang, S. Wei, W. Gao, Enhancing photocatalytic activities of titanium dioxide via well-dispersed copper nanoparticles. Chemosphere 204, 193–201 (2018)CrossRefPubMedGoogle Scholar
  8. 8.
    T. Giannakopoulou, I. Papailias, N. Todorova, N. Boukos, Y. Liu, J. Yu, C. Trapalis, Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal. Chem. Eng. J. 310, 571–580 (2017)CrossRefGoogle Scholar
  9. 9.
    L. Tang, J. Wang, G. Zeng, Y. Liu, Y. Deng, Y. Zhou, J. Tang, Z. Guo, Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. J. Hazard. Mater. 306, 295–304 (2016)CrossRefPubMedGoogle Scholar
  10. 10.
    Z. Yang, M. Shen, K. Dai, X. Zhang, H. Chen, Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity. Appl. Surf. Sci. 430, 505–514 (2018)CrossRefGoogle Scholar
  11. 11.
    H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO3 2−-doped Bi2O2CO3. ACS Catal. 5, 4094–4103 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Yang, C. Zhang, C. Lai, G. Zeng, D. Huang, M. Cheng, J. Wang, F. Chen, C. Zhou, W. Xiong, BiOX (X = Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv. Colloid Interface Sci. 254, 76–93 (2018)CrossRefPubMedGoogle Scholar
  13. 13.
    H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, In situ assembly of BiOI@Bi12O17Cl2 p–n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI 001 active facets for robust and nonselective photocatalysis. Appl. Catal. B 199, 75–86 (2016)CrossRefGoogle Scholar
  14. 14.
    F. Yang, X. Zhu, J. Fang, D. Chen, W. Feng, Z. Fang, One step solvothermal synthesis of Bi/BiPO4/Bi2WO6 heterostructure with oxygen vacancies for enhanced photocatalytic performance. Ceram. Int. 44, 6918–6925 (2018)CrossRefGoogle Scholar
  15. 15.
    H. Huang, H. Ou, J. Feng, X. Du, Y. Zhang, Achieving highly promoted visible-light sensitive photocatalytic activity on BiOIO3 via facile iodine doping. Colloid Surf. A 518, 158–165 (2017)CrossRefGoogle Scholar
  16. 16.
    X.C. Meng, Z.S. Zhang, Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. J. Mol. Catal. A 423, 533–549 (2016)CrossRefGoogle Scholar
  17. 17.
    W. Wang, B. Huang, X. Ma, Z. Wang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, Efficient separation of photogenerated electron–hole pairs by the combination of a heterolayered structure and internal polar field in pyroelectric BiOIO3 nanoplates. Chem. Eur. J. 19, 14777–14780 (2013)CrossRefPubMedGoogle Scholar
  18. 18.
    Y. Su, L. Zhang, W. Wang, Internal polar field enhanced H2 evolution of BiOIO3 nanoplates. Int. J. Hydrog. Energy 41, 10170–10177 (2016)CrossRefGoogle Scholar
  19. 19.
    F. Chen, H. Huang, L. Ye, T. Zhang, Y. Zhang, X. Han, T. Ma, Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction. Adv. Funct. Mater. 28, 1804284 (2018)CrossRefGoogle Scholar
  20. 20.
    H. Yu, J. Li, Y. Zhang, S. Yang, K. Han, F. Dong, T. Ma, H. Huang, Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem. Int. Ed. 58, 3880–3884 (2019)CrossRefGoogle Scholar
  21. 21.
    F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, The role of polarization in photocatalysis. Angew. Chem. Int. Ed. 58, 2–15 (2019)CrossRefGoogle Scholar
  22. 22.
    H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang, Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem. Int. Ed. 56, 11860–11864 (2015)CrossRefGoogle Scholar
  23. 23.
    R. Zhou, J. Wu, J. Zhang, H. Tian, P. Liang, T. Zeng, P. Lu, J. Ren, T. Huang, X. Zhou, P. Sheng, Photocatalytic oxidation of gas-phase Hg0 on the exposed reactive facets of BiOI/BiOIO3 heterostructures. Appl. Catal. B 204, 465–474 (2017)CrossRefGoogle Scholar
  24. 24.
    F. Chen, H. Huang, Y. Zhan, T. Zhang, Achieving UV and visible-light photocatalytic activity enhancement of AgI/BiOIO3 heterostructure: decomposition for diverse industrial contaminants and high mineralization ability. Chin. Chem. Lett. 28, 2244–2250 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Sun, J. Wu, Q. Li, Q. Liu, Y. Qi, L. You, Z. Ji, P. He, P. Sheng, J. Ren, W. Zhang, J. Lu, J. Zhang, Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron–hole pairs. Appl. Catal. B 218, 80–90 (2017)CrossRefGoogle Scholar
  26. 26.
    S.D. Nguyen, J. Yeon, S.H. Kim, P.S. Halasyamani, BiO(IO3): a new polar iodate that exhibits an Aurivillius-type (Bi2O2)2+ layer and a large SHG response. J. Am. Chem. Soc. 133, 12422–12425 (2011)CrossRefPubMedGoogle Scholar
  27. 27.
    I. Ardelean, S. Cora, V. Ioncu, Structural investigation of CuO–Bi2O3–B2O3 glasses by FT-IR, Raman and UV–VIS spectroscopies. J. Optoelectron. Adv. Mater. 8, 1843–1847 (2006)Google Scholar
  28. 28.
    X. Qi, M. Gu, X. Zhu, J. Wu, H. Long, K. He, Q. Wu, Fabrication of BiOIO3 nanosheets with remarkable photocatalytic oxidation removal for gaseous elemental mercury. Chem. Eng. J. 285, 11–19 (2016)CrossRefGoogle Scholar
  29. 29.
    A.B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007)CrossRefGoogle Scholar
  30. 30.
    H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 7, 482–492 (2015)CrossRefPubMedGoogle Scholar
  31. 31.
    L. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan, Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal. B 142–143, 1 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  3. 3.Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversityHat YaiThailand
  4. 4.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  5. 5.Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  6. 6.Rajamangala University of Technology Lanna Chiang RaiChiang RaiThailand

Personalised recommendations