Skip to main content

Advertisement

Log in

Biosynthesis, Magnetic and Cytotoxic Studies of Hematite Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles are special nanoparticles used in the biomedical applications such as magnetic separation, drug delivery and magnetic resonance imaging enhancement. They are non-toxic and have high chemical stability. In the present study, α-Fe2O3 nanoparticles (Hematite) were biosynthesized using the Salvadora persica aqueous extract. The structures and morphological properties of the synthesized nanoparticles were characterized by PXRD, FESEM, EDX, VSM, Raman and FTIR analysis. The results showed that, the produced nanoparticles are spherical in shape and uniform with particles size about 15–20 nm. The purity of the synthesized nanoparticles was found to be high, such that they were specified well in EDX graph. The saturated magnetism (Ms) of the synthesized α-Fe2O3 nanoparticles was equal to 1.8 emu/g, which is higher than the commercial α-Fe2O3-NPs. This result showed superparamagnetic properties of the synthesized nanoparticles. Cytotoxic activity of these nanoparticles was applied against colon (HT-29) cancer cell lines. Results showed no cytotoxic activity at concentrations lower than 125 μg/mL. Therefore, it can be concluded that, the synthesized nanoparticles can be used in the biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Saif, A. Tahir, Y. Chen, Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials. 6, 1–26 (2016)

    Google Scholar 

  2. T. Yin, H. Wu, Q. Zhang, G. Gao, J.G. Shapter, Y. Shen, Q. He, P. Huang, W. Qi, C. Zhang, Y. Yang, D. Cui, In vivo targeted therapy of gastric tumors via the mechanical rotation of a flower-like Fe3O4@Au nanoprobe under an alternating magnetic field. NPG Asia Mater. 9, 408 (2017)

    Google Scholar 

  3. Q. Zhang, T. Yin, R. Xu, W. Gao, H. Zhao, J.G. Shapter, K. Wang, Y. Shen, P. Huang, G. Gao, Y. Wu, D. Cui, Large-scale immuno-magnetic cell sorting of T cells based on a self-designed high-throughput system for potential clinical application. Nanoscale. 9, 13592–13599 (2017)

    CAS  PubMed  Google Scholar 

  4. P. Nasehi, M. Saei Moghaddam, S.F. Abbaspour, N. Karachi, Preparation and characterization of a novel Mn-Fe2O4 nanoparticle loaded on activated carbon adsorbent for kinetic, thermodynamic and isotherm surveys of aluminum ion adsorption. Sep. Sci. Technol. 1–11 (2019)

  5. S. Yari, S. Abbasizadeh, S.E. Mousavi, M.S. Moghaddam, A. Zarringhalam Moghaddam, Adsorption of Pb(II) and Cu(II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process. Saf. Environ. Prot. 94, 159–171 (2015)

    CAS  Google Scholar 

  6. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011)

    CAS  PubMed  Google Scholar 

  7. S. Sakurai, A. Namai, K. Hashimoto, S. Ohkoshi, First observation of phasetrans formation of all four Fe2O3 phases (γ–ε–β–α-phase). J. Am. Chem. Soc. 131, 18299–18303 (2009)

    CAS  PubMed  Google Scholar 

  8. R. Skomski, J.M.D. Coey, Permanent Magnetism (Institute of Physics Publishing Ltd, Bristol, 1999)

    Google Scholar 

  9. D. Trpkov, M. Panjan, L. Kopanja, M. Tadić, Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures. Appl. Surf. Sci. 457, 427–438 (2018)

    CAS  Google Scholar 

  10. T. Shahwan, S. AbuSirriah, M. Nairat, E. Boyac, A.E. Erŏglu, T.B. Scott, K.R. Hallam, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172, 258–266 (2011)

    CAS  Google Scholar 

  11. R.A. Bepari, P. Bharali, B.K. Das, Controlled synthesis of α- and γ-Fe2O3 nanoparticles via thermolysis of PVA gels and studies on α-Fe2O3 catalyzed styrene epoxidation. J. Saudi Chem. Soc. 21, S170–S178 (2017)

    CAS  Google Scholar 

  12. X. Weng, L. Huang, Z. Chen, M. Megharaj, R. Naidu, Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind. Crops Prod. 51, 342–347 (2013)

    CAS  Google Scholar 

  13. A. Miri, M. Sarani, Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram. Inter. 44, 12642–12647 (2018)

    CAS  Google Scholar 

  14. M. Khatami, R.S. Varma, N. Zafarnia, H. Yaghoobi, M. Sarani, V.G. Kumar, Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain. Chem. Pharm. 10, 9–15 (2018)

    Google Scholar 

  15. A. Miri, M. Sarani, A. Hashemzadeh, Z. Mardani, M. Darroudi, Biosynthesis and cytotoxic activity of lead oxide nanoparticles. Green Chem. Lett. Rev. 11, 567–572 (2018)

    CAS  Google Scholar 

  16. M. Khatami, H.Q. Alijani, B. Fakheri, M.M. Mobasseri, M. Heydarpour, Z.K. Farahani, A.U. Khan, Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. J. Clean. Prod. 208, 1171–1177 (2019)

    CAS  Google Scholar 

  17. H.Q. Alijani, S. Pourseyedi, M.T. Mahani, M. Khatami, Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J. Mol. Struct. 1175, 214–218 (2019)

    CAS  Google Scholar 

  18. M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, M. Khatami, A review on metal-organic frameworks: synthesis and applications. TrAc Trends Anal. Chem. (2019)

  19. A. Manikandan, M. Durka, S.A. Antony, Hibiscus rosa-sinensis leaf extracted Green methods, magneto-optical and catalytic properties of spinel CuFe2O4 nano- and microstructures. J. Inorg. Organomet. Polym. Mater. 25, 1019–1031 (2015)

    CAS  Google Scholar 

  20. P. Sharma, S. Pant, P. Poonia, S. Kumari, V. Dave, S. Sharma, Green synthesis of colloidal copper nanoparticles capped with Tinospora cordifolia and its application in catalytic degradation in textile dye: an ecologically sound approach. J. Inorg. Organomet. Polym Mater. 28, 2463–2472 (2018)

    CAS  Google Scholar 

  21. H.M. Asoufia, T.M. Al-Antarya, A.M. Awwad, Green route for synthesis hematite (α-Fe2O3) nanoparticles: toxicity effect on the green peach aphid, Myzus persicae (Sulzer). Environ. Nanotechnol. Monit. Manag. 9, 107–111 (2018)

    Google Scholar 

  22. S. Naz, M. Islam, S. Tabassum, N.F. Fernandes, E.J.C. de Blanco, M. Zia, Green symthesis oh hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J. Mol. Struct. 1185, 1–7 (2019)

    CAS  Google Scholar 

  23. B. Ahmmad, K. Leonard, M.S. Islam, J. Kurawaki, M. Muruganandham, T. Ohkubo, Y. Kuroda, Green synthesis of mesoporous hematite (a-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Powder Technol. 24, 160–167 (2013)

    CAS  Google Scholar 

  24. K.B. Narayanan, S.S. Han, One-pot green synthesis of hematite (a-Fe2O3) nanoparticles by ultrasonic irradiation and their in vitro cytotoxicity on human keratinocytes CRL-2310. J. Clust. Sci. 27, 1763–1775 (2016)

    CAS  Google Scholar 

  25. M. Alagiri, S.B.A. Hamid, Green synthesis of a-Fe2O3 nanoparticles for photocatalytic application. J. Mater. Sci. 25, 3572–3577 (2014)

    CAS  Google Scholar 

  26. N. Basavegowda, K. Mishra, Y.R. Lee, Synthesis, characterization, and catalytic applications of hematite (α-Fe2O3) nanoparticles as reusable nanocatalyst. Adv. Nat. Sci. 8, 1–6 (2017)

    Google Scholar 

  27. Salvadora persica, World Agroforestry Centre. 2 (2009)

  28. Salvadora persica, Food and Agriculture Organization of the United Nations. 2 (2009)

  29. H.A.S. Halawany, Review on miswak (Salvadora persica) and its effect on various aspects of oral health. Saudi Dent. J. 24, 63–69 (2012)

    PubMed  PubMed Central  Google Scholar 

  30. A. Miri, M. Sarani, Biosynthesis and cytotoxic study of synthesized zinc oxide nanoparticles using Salvadora persica. BioNanoScience 9, 164–171 (2018)

    Google Scholar 

  31. A. Miri, H.O.S. Vahed, M. Sarani, Biosynthesis of silver nanoparticles and their role in photocatalytic degradation of methylene blue dye. Res Chem Intermediat 1–9 (2018)

  32. Abdolhossien Miri, Majid Darroudi, Reza Entezari, Mina Sarani, Biosynthesis of gold nanoparticles using Prosopis farcta extract and its in vitro toxicity on colon cancer cells. Res. Chem. Intermediat. 44, 3169–3177 (2018)

    CAS  Google Scholar 

  33. M. Bashir, S. Riaz, S. Naseem, Effect of pH on ferromagnetic iron oxide nanoparticles. Mater. Today Proc. 2, 5664–5668 (2015)

    Google Scholar 

  34. G. Gnanaprakash, S. Mahadevan, T. Jayakumar, P. Kalyanasundaram, J. Philip, B. Raj, Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Mater. Chem. Phys. 103, 168–175 (2007)

    CAS  Google Scholar 

  35. D. Sivakumar, M.M. Rafi, B. Sathyaseelan, K.M.P. Nazeer, A.M.A. Begam, Synthesis and characterization of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by glucose, fructose and sucrose. Int. J. Nano Dimens. 8, 257–264 (2017)

    CAS  Google Scholar 

  36. L. Chen, X. Yang, J. Liu, H. Wu, H. Zhan, C. Liang, M. Wu, Continuous shape-and spectroscopy-tuning of hematite nanocrystals. Inorg. Chem. 49, 8411–8420 (2010)

    CAS  PubMed  Google Scholar 

  37. Z.X. Tang, S. Nafis, M.C. Sorensen, Magnetic properties of aerosol synthesized iron oxide particles. J. Magn. Magn. Mater. 80, 285–289 (1989)

    CAS  Google Scholar 

  38. Y. Sun, G. Guo, B. Yang, W. Cai, Y. Tian, M. He, Y. Liu, One-step solution synthesis of Fe2O3 nanoparticles at low temperature. Physica B 406, 1013–1016 (2011)

    CAS  Google Scholar 

  39. B. Tang, G. Wang, L. Zhuo, J. Ge, L. Cui, Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods. Inorg. Chem. 45, 5196–5200 (2006)

    CAS  PubMed  Google Scholar 

  40. F. Bødker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Mørup, Magnetic properties of hematite nanoparticles. Phys. Rev. B. 61, 6826–6838 (2000)

    Google Scholar 

  41. C.C. Berry, S. Wells, S. Charles, G. Aitchison, A.S. Curtis, Cell response to dextranderivatised iron oxide nanoparticles post internalization. Biomaterials 25, 5405–5413 (2004)

    CAS  PubMed  Google Scholar 

  42. C.C. Berry, S. Wells, S. Charles, A.S. Curtis, Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24, 4551–4557 (2003)

    CAS  PubMed  Google Scholar 

  43. M.I. Khan, A. Mohammad, G. Patil, S.A.H. Naqvi, L.K.S. Chauhan, I. Ahmad, Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33, 1477–1488 (2012)

    CAS  PubMed  Google Scholar 

  44. B. Ankamwar, T.C. Lai, J.H. Huang, R.S. Liu, M. Hsiao, C.H. Chen, Y.K. Hwu, Biocompatibility of Fe(3)O(4) nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21, 75102 (2010)

    CAS  PubMed  Google Scholar 

  45. M. Tadic, L. Kopanja, M. Panjan, S. Kralj, J. Nikodinovic-Runic, Z. Stojanovic, Synthesis of core-shell hematite (α-Fe2O3) nanoplates: quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity. Appl. Surf. Sci. 403, 628–634 (2017)

    CAS  Google Scholar 

  46. L.S. Arias, J.P. Pessan, A.P.M. Vieira, T.M.T. de Lima, A.C.B. Delbem, D.R. Monteiro, Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7, 1–32 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Sarani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miri, A., Khatami, M. & Sarani, M. Biosynthesis, Magnetic and Cytotoxic Studies of Hematite Nanoparticles. J Inorg Organomet Polym 30, 767–774 (2020). https://doi.org/10.1007/s10904-019-01245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01245-6

Keywords

Navigation