Skip to main content
Log in

Fabrication of Polymer@α-FeOOH Core–Shell Particles for the Photocatalytic Degradation of Organic Pollutant

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

α-FeOOH nanocrystals were grown on the surface of polymeric spheres through in situ hydrothermal synthesis. The polymer with the surface amine groups was composed of styrene, divinylbenzene and 2-(dimethylamino)ethyl methacrylate via emulsion polymerization, which abbreviated it as PSDM. The structure and component of PSDM@α-FeOOH composites were investigated by Fourier transform infrared, thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscopy. It was observed that the crystal structure, morphology and dispersion of α-FeOOH depended on different factors, i.e., temperature, reactant concentration and ferric salt types. A plausible formation mechanism of PSDM@α-FeOOH composites was revealed based on the systematic investigations of the assembly process. Additionally, it was possible for this method to be extended to synthesis the composite particles for other metal ions. The photocatalytic activity of the composites had been discussed by testing the degradation of rhodamine B as well as methylene blue and neutral red in the presence of H2O2. The measurements demonstrated that PSDM@α-FeOOH composites catalyst exhibited excellent photocatalytic ability and superior stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Giannakis, Appl. Catal. B 248, 309–319 (2019)

    CAS  Google Scholar 

  2. K. Maeda, T.E. Mallouk, Bull. Chem. Soc. Jpn. 92(1), 38–54 (2019)

    CAS  Google Scholar 

  3. N. Roy, N. Suzuki, C. Terashima, A. Fujishima, Bull. Chem. Soc. Jpn. 92(1), 178–192 (2019)

    CAS  Google Scholar 

  4. Á. Tolosana-Moranchel, A. Manassero, M.L. Satuf, O.M. Alfano, J.A. Casas, A. Bahamonde, Appl. Catal. B 246, 1–11 (2019)

    CAS  Google Scholar 

  5. J. Liu, Y. Wang, J. Ma, Y. Peng, A. Wang, J. Alloys Compd. 783, 898–918 (2019)

    CAS  Google Scholar 

  6. S. Pankaj, J. Ji-Wook, L.J. Sung, ChemCatChem 11(1), 157–179 (2019)

    Google Scholar 

  7. M.C. Pereira, E.M. Garcia, A.C.D. Silva, E. Lorençon, J.D. Ardisson, E. Murad, J.D. Fabris, T. Matencio, T.D.C. Ramalho, M.V.J. Rocha, J. Mater. Chem. 21(28), 10280–10282 (2011)

    CAS  Google Scholar 

  8. J. Wang, Y. Sun, H. Jiang, J. Feng, J. Saudi Chem. Soc. 21(5), 545–557 (2016)

    Google Scholar 

  9. Y. Liu, X. Liu, Y. Zhao, D.D. Dionysiou, Appl. Catal. B 213, 74–86 (2017)

    CAS  Google Scholar 

  10. S.R. Pouran, A.A.A. Raman, W.M.A.W. Daud, J. Clean. Prod. 64(2), 1–12 (2013)

    Google Scholar 

  11. M. Tokumura, M. Shibusawa, Y. Kawase, Chem. Eng. Sci. 100, 212–224 (2013)

    CAS  Google Scholar 

  12. G.S. Zhang, Q. Wang, W. Zhang, T. Li, Y.X. Yuan, P. Wang, Photochem. Photobiol. Sci. 15(8), 1046–1053 (2016)

    CAS  PubMed  Google Scholar 

  13. R.F. Chen, X.N. Zhang, H. Liu, X.Q. Song, Y. Wei, RSC Adv. 5(93), 76548–76555 (2015)

    CAS  Google Scholar 

  14. Y.J. Ai, L. Liu, C. Zhang, L. Qi, M.Q. He, Z. Liang, H.B. Sun, G.A. Luo, Q.L. Liang, ACS Appl. Mater. Interfaces 10(38), 32180–32191 (2018)

    CAS  PubMed  Google Scholar 

  15. G.L. Liu, S.J. Liao, D.W. Zhu, L.H. Liu, D.H. Cheng, H.D. Zhou, Mater. Res. Bull. 46(8), 1290–1295 (2011)

    CAS  Google Scholar 

  16. B.L. Yuan, X.T. Li, K.L. Li, W.Q. Chen, Colloids Surf. A 379, 157–162 (2011)

    CAS  Google Scholar 

  17. G.X. Zhao, X.B. Huang, Z.W. Tang, Q.F. Huang, F.L. Niu, X.K. Wang, Polym. Chem. 9(26), 3562–3582 (2018)

    CAS  Google Scholar 

  18. J. Liu, M. Zheng, X. Shi, H. Zeng, H. Xia, Adv. Funct. Mater. 26, 919–930 (2016)

    CAS  Google Scholar 

  19. R. Das, D. Das, P. Ghosh, S. Dhara, A.B. Panda, S. Pal, RSC Adv. 5, 27481–27490 (2015)

    CAS  Google Scholar 

  20. Q. Wang, H.M.J. Chen, Z. Du, J. Mi, J. Environ. Chem. Eng. 5, 2807–2814 (2017)

    CAS  Google Scholar 

  21. G.J. Wei, K. Du, X.X. Zhao, C. Li, J.Q. Li, K.K. Ren, Y.W. Huang, H. Wang, S. Yao, C.H. An, J. Alloys Compd. 728, 631–639 (2017)

    CAS  Google Scholar 

  22. X. Zhang, C. Cheng, J. Qian, Z. Lu, S. Pan, B. Pan, Environ. Sci. Technol. 51(16), 9210–9218 (2017)

    CAS  PubMed  Google Scholar 

  23. G. Wang, Y. Zhang, Y. Fang, Z. Gu, J. Am. Ceram. Soc. 90(7), 2067–2072 (2007)

    CAS  Google Scholar 

  24. L. Xu, H. Li, X. Jiang, J. Wang, L. Li, Y. Song, L. Jiang, Macromol. Rapid Commun. 31(16), 1422–1426 (2010)

    CAS  PubMed  Google Scholar 

  25. X.L. Gu, X. Zhu, X.Z. Kong, Z. Zhang, Soft Matter 7(8), 4055–4061 (2011)

    CAS  Google Scholar 

  26. H. Mao, Y. Song, D. Qian, D. Liu, S. Wu, Y. Zhang, Y. Hisaeda, X.M. Song, RSC Adv. 5(111), 91654–91664 (2015)

    CAS  Google Scholar 

  27. Y.D. Liu, X.M. Quan, H.J. Choi, Colloid Polym. Sci. 290(16), 1703–1706 (2012)

    CAS  Google Scholar 

  28. M. Gon, K. Tanaka, Y. Chujo, Bull. Chem. Soc. Jpn. 90(5), 463–474 (2017)

    CAS  Google Scholar 

  29. Y. Kong, Y. Zhuang, J. Yu, Z. Han, B. Shi, CrystEngComm 20(15), 2093–2101 (2018)

    CAS  Google Scholar 

  30. W.J. Lin, C.F. Yang, Z.L. Xue, Y.W. Huang, H.S. Luo, X.H. Zu, L.J. Zhang, G.B. Yi, J. Colloid Interface Sci. 528, 135–144 (2018)

    CAS  PubMed  Google Scholar 

  31. J. Jang, H. Ha, Chem. Mater. 15(11), 2109–2111 (2003)

    CAS  Google Scholar 

  32. A.K. Patra, D. Kim, ACS Sustain. Chem. Eng. 5(2), 1272–1279 (2017)

    CAS  Google Scholar 

  33. H. Qi, L. Cao, J. Li, J. Huang, Z. Xu, Y. Cheng, X. Kong, K. Yanagisawa, ACS Appl. Mater. Interfaces 8(51), 35253–35263 (2016)

    CAS  PubMed  Google Scholar 

  34. S. Musić, Z. Orehovec, S. Popović, I. Czakó-Nagy, J. Mater. Sci. 29(8), 1991–1998 (1994)

    Google Scholar 

  35. Z. Sun, X. Feng, W. Hou, Nanotechnology 18(45), 455607 (2007)

    Google Scholar 

  36. M. Ži, M. Ristić, S. Musić, J. Mol. Struct. 993(1–3), 115–119 (2011)

    Google Scholar 

  37. G. Liu, Q. Deng, H. Wang, D.H.L. Ng, M. Kong, W. Cai, G. Wang, J. Mater. Chem. 22(19), 9704–9713 (2012)

    CAS  Google Scholar 

  38. A.A. Jelle, M. Hmadeh, P.G. O’Brien, D.D. Perovic, G.A. Ozin, ChemNanoMat 2(11), 1047–1054 (2016)

    CAS  Google Scholar 

  39. J.L. Cao, G.J. Li, Y. Wang, G. Sun, H. Bala, X.D. Wang, Z.Y. Zhang, Int. J. Photoenergy 46, 8921 (2014)

    Google Scholar 

  40. M. Sun, R.A. Senthil, J.Q. Pan, S. Osman, A. Khan, Catalysts 8(9), 392 (2018)

    Google Scholar 

  41. W. Zhang, C. Hu, J. Tan, Z. Fan, Y. Sun, S. Ran, F. Chi, X. Liu, Y. Lv, Nano 11(6), 1650071 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51673161, 51773172), Scientific and Technological Innovation Platform of Fujian Province (2014H2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizong Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, Z., Wang, S. et al. Fabrication of Polymer@α-FeOOH Core–Shell Particles for the Photocatalytic Degradation of Organic Pollutant. J Inorg Organomet Polym 30, 513–524 (2020). https://doi.org/10.1007/s10904-019-01211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01211-2

Keywords

Navigation