Skip to main content
Log in

Solid-Phase Synthesis and Photocatalytic Property of Sulfur and Nickel Doped Tin Oxide Powder Materials by Isomeric Surfactant as Template

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nickel and sulfur-doped tin oxide powder materials were successfully prepared by a simple solid-state reaction method at low temperature using 2,4-dimethylbenzenesulfonic acid sodium (MSDS) and sodium xylenesulfonate (SXS) isomeric surfactants as templates. The synthesized powder materials were characterized by X-ray diffraction (XRD), UV–Vis diffuse reflectance spectrum (DRS UV–Vis), scanning electron microscopy (SEM)/energy dispersive X-ray (EDX), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), and the zetapotential and particle size distribution of the powder materials in solution were tested. The results show that the doping of S and Ni improves the absorption intensity of the materials in the UV–Vis region, and forming the p-n heterojunction of NiO/SnO2, as well as changing the relative diffraction intensity (I101/I110). SXS is beneficial to the doping of S and the formation of NiII and SIV, while MSDS is more favorable for the doping of Ni and the formation of NiIII and SVI ions during the process of calcination at 500 °C. The nickel single-doped and sulfur–nickel double-doped SnO2 powder materials with MSDS are more stable in the photocatalytic system than that with SXS, and exhibit high photocatalytic activity for methyl blue under UV-light irradiation, within 40 min and at 27 °C, the photodegradation rate (98.57%) of Ni–S–SnO2MSDS is the highest than others, which is mainly derived from the obvious steric hindrance effect of MSDS and the results of the synergistic photocatalystic degradation of the multi-element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Spence, The UV absorption edge of tin oxide thin films. J. Appl. Phys. 38, 3767–3771 (1967)

    CAS  Google Scholar 

  2. K.B. Sundaram, G.K. Bhagavat, Optical absorption studies on tin oxide films. J. Phys. D 14, 921–925 (1981)

    CAS  Google Scholar 

  3. Y.K. Liu, C.L. Zheng, W.Z. Wang, Synthesis and characterization of rutile SnO2 nanorods. Adv. Mater. 13, 1883–1885 (2001)

    CAS  Google Scholar 

  4. S. Samson, C.G. Fonstad, Defect structure and electronic donor levels in stannic oxide crystals. J. Appl. Phys. 44, 4618–4621 (1973)

    CAS  Google Scholar 

  5. M.K. Lv, Solid State Chemistry (Shandong University Press, Shandong, 1996), p. 31

    Google Scholar 

  6. S.Y. Liu, W.H. Tang, Q.G. Feng, C.Y. Luo, Correlation of microstructure and visible light catalytic property in Al-doped titanium dioxide powder materials. J. Mol. Catal. 25, 442–447 (2011)

    CAS  Google Scholar 

  7. A. Houas, H. Lachhe, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001)

    CAS  Google Scholar 

  8. C.G. Fonstad, R.H. Reduker, Electrical properties of high-quality stannic oxide crystals. J. Appl. Phys. 42, 2911–2918 (1971)

    CAS  Google Scholar 

  9. Z.X. Zhai, J.Q. Liu, G.H. Jin, C.Y. Luo, Q.X. Jiang, Y.Q. Zhao, Characterization and gas sensing properties of copper-doped tin oxide thin films deposited by ultrasonic spray pyrolysis. Mater. Sci. 22, 201–204 (2016)

    Google Scholar 

  10. B. Xu, H.M. Cheng, Y.Q. Wang, J.M. Ma, Preparation and properties of nanosized composite particle SnO2/CdS. Acta Phys. Chim. Sin. 15, 925–929 (1999)

    CAS  Google Scholar 

  11. H. Liu, A. Wang, Q. Sun, T.T. Wang, H.P. Zeng, Cu nanoparticles/fluorine-doped tin oxide (FTO) nano-composites for photocatalytic H2 evolution under visible light irradiation. Catalysts 7, 385–398 (2017)

    Google Scholar 

  12. G. Giusti, V. Consonni, E. Puyoo, D. Bellet, High performance ZnO–SnO2: F nanocomposite transparent electrodes for energy applications. ACS Appl. Mater. Interface 6, 14096–14107 (2014)

    CAS  Google Scholar 

  13. G. Yang, Z. Yan, T. Xiao, Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity. Appl. Surf. Sci. 258, 8704–8712 (2012)

    CAS  Google Scholar 

  14. S. Wang, J. Huang, Y. Zhao, S. Wang, X. Wang, Preparation, characterization and catalytic behavior of SnO2 supported Au catalysts for low-temperature CO oxidation. J. Disper. Sci. Technol. 259, 245–252 (2010)

    Google Scholar 

  15. Y. Lu, P.J. Wang, C.W. Zhang, L. Jiang, G.L. Zhang, P. Song, Material optoelectronic properties of In, N co-doped SnO2 studied by first principles. Acta Phys. Sin 60, 223–229 (2011)

    Google Scholar 

  16. Y. Lu, P.J. Wang, C.W. Zhang, X.Y. Feng, L. Jiang, G.L. Zhang, Study of material properties of Fe, S co-doped SnO2 by first principles. Acta Phys. Sin 61, 23101–23106 (2012)

    Google Scholar 

  17. J.H. Chi, J. Wang, Synthesis, morphology and optical properties of Mn doped SnO2 one-dimensional nano-structures. Acta Phys. Chim. Sin. 26, 2306–2310 (2010)

    CAS  Google Scholar 

  18. S.Y. Liu, W.H. Tang, H.Y. Yang, C.Y. Luo, T.Z. Jiang, Regulation of surfactant on the microstructure and photocatalytic property of Al doped titanium dioxide powder. Finechemicals 30, 1–7 (2013)

    Google Scholar 

  19. Xu Hao, Tang Cheng-Li, Zhang Qian, Yan Wei, A microwave approach to the preparation of Sb-doped SnO2 electrode. J. Inorg. Mater. 27, 1–6 (2012)

    Google Scholar 

  20. M.A. Farrukh, P. Tan, R. Adnan, Influence of reaction parameters on the synthesis of surfactant-assisted tin oxide nanoparticles. Turk. J. Chem. 36, 303–314 (2012)

    CAS  Google Scholar 

  21. M.M. Rahman, X.B. Li, N.S. Lopa, J.J. Lee, Electrodeposition of gold on fluorine-doped tin oxide: characterization and application for catalytic oxidation of nitrite. Bull. Korean Chem. Soc. 35, 2072–2076 (2014)

    CAS  Google Scholar 

  22. S.B. Rawal, D.P. Ojha, Y.S. Choi, W.I. Lee, Coupling of W-doped SnO2 and TiO2 for efficient visible-light photocatalysis. Bull. Korean Chem. Soc. 35, 913–918 (2014)

    CAS  Google Scholar 

  23. W.B. Soltan, M.S. Lassoued, S. Ammar, T. Toupance, Vanadium doped SnO2 nanoparticles for photocatalytic degradation of methylene blue. J. Mater. Sci. 28, 15826–15834 (2017)

    Google Scholar 

  24. Z.B. He, S.Y. Liu, H.Y. Yang, Z.Y. Min, X. Nie, Sulfur doped tin oxide nanoparticles: solid state synthesis and performance for visible-light driven photocatalytic degradation of paraquat. Chin. J. Inorg. Chem. 31, 649–658 (2015)

    CAS  Google Scholar 

  25. X.D. Lou, T.X. Wang, Q.T. Cheng, Preparation and photocatalytic activity of nickel oxide catalysts. Technol. Water Treat. 31, 32–35 (2005)

    CAS  Google Scholar 

  26. Y.K. Sun, B. Bai, H.L. Wang, Y.R. Suo, Preparation of p–n heterojunction-like NiO/In2O3 photocatalysts and their degradation performance of doxycycline hyclate. Chem. Eng. 44, 26–31 (2016)

    CAS  Google Scholar 

  27. H.B. Li, G.Y. Huang, J. Zhang, S.H. Fu, T.G. Wang, H.W. Liao, Photochemical synthesis and enhanced photo-catalytic activity of MnOx/BiPO4 heterojunction. Trans. Nonferrous Metals Soc. China 27, 1127–1133 (2017)

    CAS  Google Scholar 

  28. W.B. Soltan, M.S. Lassoued, S. Ammar, T. Toupance, Vanadium doped SnO2 nanoparticles for photocatalytic degradation of methylene blue. J. Mater. Sci. 28, 15826–15834 (2017)

    Google Scholar 

  29. K.P. Gattu, K. Ghule, A.A. Kashale, V.B. Patil, D.M. Phase, Bio-green synthesis of Ni-doped tin oxide nano-particles and its influence on gas sensing properties. RSC Adv. 5, 72849–72856 (2015)

    CAS  Google Scholar 

  30. J.P. Cheng, B.B. Wang, M.G. Zhao, F. Liu, X.B. Zhang, Nickel-doped tin oxide hollow nanofibers prepared by electrospinning for acetone sensing. Sens. Actuators B 190, 78–85 (2014)

    CAS  Google Scholar 

  31. S.P. Bharti, E. Singh, U. Kumar, Synthesis and characterization of nickel doped tin oxide nanoparticles by hydrothermal method. Nanosci. Nanotechnol. Res. 4, 115–119 (2017)

    CAS  Google Scholar 

  32. J.K. Xiao, C.W. Song, X.N. Zhang et al., Spectroscopic analysis and gas sensing performance of Ni-doped SnO2. Rare Metal Mater. Eng. 44, 2509–2512 (2015)

    CAS  Google Scholar 

  33. L.K. Randeniya, A.B. Murphy, I.C. Plumb, A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water. J. Mater. Sci. 43, 1389–1399 (2008)

    CAS  Google Scholar 

  34. Y.H. Duan, Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: a first-principles density functional approach with an empirical correction of vander Waals interactions. Phys. Rev. B 77, 045332 (2008)

    Google Scholar 

  35. X.C. Xu, Organic Chemistry (Edit II) (Higher Education Press (HEP), Beijing, 1991), pp. 120–122

    Google Scholar 

  36. S. Huang, K. Matsubara, J. Cheng et al., Highly enhanced ultraviolet photosensitivity and recovery speed in electrospun Ni-doped SnO2 nanobelts. Appl. Phys. Lett. 103, 141108 (2013)

    Google Scholar 

  37. S.Y. Liu, C.G. Zuo, S.B. Zhou, Sulfur doped ceria mesoporous nanomaterial: solid-state synthesis, characterization and photocatalytic property of methyl orange. Sci. Adv. Mater. 10, 155–164 (2018)

    CAS  Google Scholar 

  38. S.Y. Liu, Y.D. Chen, T.Y. Qiu, L.H. Ou, C.G. Zuo, Q.G. Feng, Sulfur doped lead monoxide superfine powder materials: solid-state synthesis, characterization, adsorption and photocatalytic property of methylene blue. J. Inorg. Organomet. Poly. Mater. 28, 2584–2595 (2018)

    Google Scholar 

  39. S.Y. Zou, M.A. Kamran, G.L. Yang, R.B. Liu, L.J. Shi, Y.Y. Zhang, B.H. Jia, H.Z. Zhong, B.S. Zou, Excitonic magnetic polarons and their luminescence in II–VI diluted magnetic semiconductor micronanostructures. Acta Phys. Sin. 68, 17101–17120 (2019)

    Google Scholar 

  40. F.P. Zhang, J.X. Zhang, X.Y. Yang, H. Fang, F.S. Li, Study on effects of electrical field on electronic structure of nickel oxide. J. Synth. Cryst. 45, 783–789 (2016)

    CAS  Google Scholar 

  41. E. burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–636 (1954)

    CAS  Google Scholar 

  42. S.Y. Huang, H. Wu, K. Matsubara, J. Cheng, W. Pan, Facile assembly of n-SnO2 nanobelts-p-NiO heterojunctions with enhanced ultraviolet photoresponse. Chem. Commun. 50, 2847–2850 (2014)

    CAS  Google Scholar 

  43. J. Singleton, Band Theory and Electronic Properties of Solids (Science publishing press, Beijing, 2008), pp. 36–37

    Google Scholar 

  44. J.M. Themlin, M. Chtaib, L. Henrard et al., Characterization of tin oxides by X-ray-photoemission spectroscopy. Phys. Rev. B 46, 2460–2466 (1992)

    CAS  Google Scholar 

  45. P. Periyat, S.C. Pillai, E.D.M. Cormack, J. Colreavy, S.J. Hinder, Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2. J. Phys. Chem. C 112, 7644–7652 (2008)

    CAS  Google Scholar 

  46. X.T. Yin, P. Chen, M.D. Que, Y.L. Xing, W.X. Que, M. NiuC, J.Y. Shao, Highly efficient flexible perovskite solar cells using soluiton-derived NiOx hole contacts. ACS Nano 10, 3630–3637 (2016)

    CAS  PubMed  Google Scholar 

  47. H.W. Nesbitt, D. Legrand, G.M. Bancroft, Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner. 27, 357–366 (2000)

    CAS  Google Scholar 

  48. X.D. Guo, B.H. Zhong, Y. Tang, J.X. Ren, Y.K. Hu, H. Liu, W.M. Fang, The influence of primary particle size and secondary particle size on performances of LiFePO4. J. Chem. Eng. Chin. Univ. 27, 884–888 (2013)

    CAS  Google Scholar 

  49. A.V. Brontsov, L.V. Stovanova, D.V. Kolov, Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. J. Catal. 189, 360–369 (2000)

    Google Scholar 

  50. S.Y. Liu, L.D. Wu, Z.X. Zhao, Q.G. Feng, X. Wang, C.D. Yang, Synthesis of Ni-doped TiO2 mesoporous material via solid-state reaction at low temperature and its kinetics of methyl orange photodegradation. Chin. J. Inorg. Mater. 24, 902–908 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by Hunan Province Cooperative Innovation Center for the Construction and Development of Dongting Lake Economic Zone, and Key Research Project of Hunan Provincial Department of Education (17A145). Hunan University of Arts and Science Doctoral Research Foundation (E3127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu Shao-you or Feng Qing-ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao-you, L., Yuan-dao, C., Cheng-gang, Z. et al. Solid-Phase Synthesis and Photocatalytic Property of Sulfur and Nickel Doped Tin Oxide Powder Materials by Isomeric Surfactant as Template. J Inorg Organomet Polym 30, 457–468 (2020). https://doi.org/10.1007/s10904-019-01204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01204-1

Keywords

Navigation