Wettability and Biocompatibility of TaCx Films Deposited on AISI316L Stainless Steel: Effect of Methane Concentration

Abstract

The present study aimed at investigating the effect of various CH4 concentrations ranging from 0 to 30% on wettability and biocompatibility of TaCx films which was deposited on AISI316L SS by reactive magnetron sputtering. In this regard, the structure, topography, wettability and biocompatibility of films studied by means of FESEM equipped with EDS, RBS/NRA, Raman spectroscopy, FT-IR, GIXRD, water contact angle measurement, MTT assay and immunostaining methods. it was found that the chemical nature of the coatings strongly depends on CH4 concentration. The deposited films can be categorized into three distinguishable types, namely: metallic, ceramic and amorphous, depending on CH4 concentration during the deposition procedure. Moreover, surface morphology of the coatings changed from pyramidal to spherical by increment of CH4 concentration. In addition, the wettability of the coatings decreased by increasing carbon content. However, interestingly, the coatings with the same chemical nature showed almost the same wettability. Furthermore, the investigation of the biocompatibility of the films revealed that applying the TaC base films improves the cell viability of AISI316L SS by an average value of 22%. Moreover, viability test indicated that the increasing CH4 concentration leads to further enhancement of coatings biocompatibility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    S.A. Omar, J. Ballarre, S.M. Ceré, Protection and functionalization of AISI 316L stainless steel for orthopedic implants: hybrid coating and sol gel glasses by spray to promote bioactivity. Electrochim. Acta (2016). https://doi.org/10.1016/j.electacta.2016.01.051

    Article  Google Scholar 

  2. 2.

    H. Ghorbani, A. Abdollah-zadeh, F. Bagheri, A. Poladi, Improving the bio-corrosion behavior of AISI316L stainless steel through deposition of Ta-based thin films using PACVD. Appl. Surf. Sci. 456, 398–402 (2018). https://doi.org/10.1016/j.apsusc.2018.06.154

    CAS  Article  Google Scholar 

  3. 3.

    G.S. Kaliaraj, V. Vishwakarma, K. Alagarsamy, A.M.K. Kirubaharan, A.M. Kumar, N. Rajendran, Biological and corrosion behavior of m-ZrO2 and t-ZrO2 coated 316L SS for potential biomedical applications. Ceram. Int. 44, 5639–5650 (2018). https://doi.org/10.1016/j.ceramint.2012.12.080

    CAS  Article  Google Scholar 

  4. 4.

    A.H. Ramezani, S. Hoseinzadeh, A. Bahari, The effects of nitrogen on structure, morphology and electrical resistance of tantalum by ion implantation method. J. Inorg. Organomet. Polym Mater. 28, 847–853 (2018). https://doi.org/10.1007/s10904-017-0769-4

    CAS  Article  Google Scholar 

  5. 5.

    Y. Guo, X. Wang, C. Wang, H. Yin, H. Guo, M. Li, Y. Gao, C. Yang, Structural characteristics and bioactivity of Sr doped Ta2O5 nanorods on tantalum by a facile two step hydrothermal method. J. Inorg. Organomet. Polym Mater. 28, 2473–2483 (2018). https://doi.org/10.1007/s10904-018-0912-x

    CAS  Article  Google Scholar 

  6. 6.

    F. Macionczyk, B. Gerold, R. Thull, Repassivating tantalum/tantalum oxide surface modification on stainless steel implants. Surf. Coat. Technol. 142–144, 1084–1087 (2001). https://doi.org/10.1016/S0257-8972(01)01096-9

    Article  Google Scholar 

  7. 7.

    M. Zandrahimi, M.R. Bateni, A. Poladi, J.A. Szpunar, The formation of martensite during wear of AISI 304 stainless steel. Wear (2007). https://doi.org/10.1016/j.wear.2007.01.107

    Article  Google Scholar 

  8. 8.

    X. He, G. Zhang, X. Wang, R. Hang, X. Huang, L. Qin, B. Tang, X. Zhang, Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium. Ceram. Int. 43, 16185–16195 (2017). https://doi.org/10.1016/j.ceramint.2017.08.196

    CAS  Article  Google Scholar 

  9. 9.

    S. Sutha, G. Karunakaran, V. Rajendran, Enhancement of antimicrobial and long-term biostability of the zinc-incorporated hydroxyapatite coated 316L stainless steel implant for biomedical application. Ceram. Int. 39, 5205–5212 (2013). https://doi.org/10.1016/j.ceramint.2012.12.019

    CAS  Article  Google Scholar 

  10. 10.

    M.H. Ding, B.L. Wang, L. Li, Y.F. Zheng, Preparation and characterization of TaCxN1-x coatings on biomedical 316L stainless steel. Surf. Coat. Technol. 204, 2519–2526 (2010). https://doi.org/10.1016/j.surfcoat.2010.01.028

    CAS  Article  Google Scholar 

  11. 11.

    M.H. Ding, B.L. Wang, L. Li, Y.F. Zheng, A study of TaxC1−x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering. Appl. Surf. Sci. 257, 696–703 (2010). https://doi.org/10.1016/j.apsusc.2010.07.026

    CAS  Article  Google Scholar 

  12. 12.

    P. Ren, K. Zhang, M. Wen, S. Du, J. Chen, W. Zheng, The roles of Ag layers in regulating strengthening-toughening behavior and tribochemistry of the Ag/TaC nano-multilayer films. Appl. Surf. Sci. 445, 415–423 (2018). https://doi.org/10.1016/j.apsusc.2018.03.202

    CAS  Article  Google Scholar 

  13. 13.

    M. Vargas, H.A. Castillo, E. Restrepo-Parra, W. De La Cruz, Stoichiometry behavior of TaN, TaCN and TaC thin films produced by magnetron sputtering. Appl. Surf. Sci. 279, 7–12 (2013). https://doi.org/10.1016/j.apsusc.2013.03.028

    CAS  Article  Google Scholar 

  14. 14.

    S. Du, K. Zhang, M. Wen, Y. Qin, R. Li, H. Jin, X. Bao, Optimizing the tribological behavior of tantalum carbide coating for the bearing in total hip joint replacement. Vaccum. 150, 222–231 (2018). https://doi.org/10.1016/j.vacuum.2018.01.050

    CAS  Article  Google Scholar 

  15. 15.

    S. Du, K. Zhang, M. Wen, P. Ren, Q. Meng, C. Hu, W. Zheng, Tribochemistry dependent tribological behavior of superhard TaC/SiC multilayer films. Surf. Coat. Technol. 337, 492–500 (2018). https://doi.org/10.1016/j.surfcoat.2018.01.064

    CAS  Article  Google Scholar 

  16. 16.

    M. Ali, M. Ürgen, M.A. Atta, A. Kawashima, M. Nishijima, Surface morphology, nano-indentation and TEM analysis of tantalum carbide-graphite composite film synthesized by hot-filament chemical vapor deposition. Mater. Chem. Phys. 138, 944–950 (2013). https://doi.org/10.1016/j.matchemphys.2013.01.005

    CAS  Article  Google Scholar 

  17. 17.

    M. Nikravesh, G.H. Akbari, A. Poladi, Mechanical properties and microstructural evolution of Ta/TaNx double layer thin films deposited by magnetron sputtering. Int. J. Eng. 30, 288–293 (2017)

    CAS  Google Scholar 

  18. 18.

    S.S. Firouzabadi, M. Naderi, K. Dehghani, F. Mahboubi, Effect of nitrogen flow ratio on nano-mechanical properties of tantalum nitride thin film. J. Alloys Compd. 719, 63–70 (2017). https://doi.org/10.1016/j.jallcom.2017.05.159

    CAS  Article  Google Scholar 

  19. 19.

    S. Firoozbakht, E. Akbarnejad, A.S. Elahi, M. Ghoranneviss, Growth and characterization of tungsten oxide thin films using the reactive magnetron sputtering system. J. Inorg. Organomet. Polym Mater. 26, 889–894 (2016). https://doi.org/10.1007/s10904-016-0380-0

    CAS  Article  Google Scholar 

  20. 20.

    E. Akbarnejad, M. Ghoranneviss, A.S. Elahi, Cadmium telluride nanostructure deposition by RF magnetron sputtering on flexible Cu foils. J. Inorg. Organomet. Polym Mater. 26, 270–275 (2016). https://doi.org/10.1007/s10904-015-0299-x

    CAS  Article  Google Scholar 

  21. 21.

    O.A. Fouad, A.K. Rumaiz, S.I. Shah, Reactive sputtering of titanium in Ar/CH4gas mixture: target poisoning and film characteristics. Thin Solid Films 517, 5689–5694 (2009). https://doi.org/10.1016/j.tsf.2009.02.119

    CAS  Article  Google Scholar 

  22. 22.

    M.M. Esmaeili, M. Mahmoodi, R. Imani, Tantalum carbide coating on Ti-6Al-4 V by electron beam physical vapor deposition method: study of corrosion and biocompatibility behavior. Int. J. Appl. Ceram. Technol. 14, 374–382 (2017). https://doi.org/10.1111/ijac.12658

    CAS  Article  Google Scholar 

  23. 23.

    Y.Y. Chang, H.L. Huang, Y.C. Chen, J.T. Hsu, T.M. Shieh, M.T. Tsai, Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films. PLoS ONE 9, 1–7 (2014). https://doi.org/10.1371/journal.pone.0095590

    CAS  Article  Google Scholar 

  24. 24.

    E.A. Poladi, H.R.M. Semnani, H.R.G. Emadoddin, F. Mahboubi, Nanostructured TaC Film deposited by reactive magnetron sputtering: influence of gas concentration on structural, mechanical, wear and corrosion properties. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.01.055

    Article  Google Scholar 

  25. 25.

    C. Li, S. Shang, P. Yang, L. Zhang, L. Qi, Preparation and mechanical property test on Cu/Cr bilayer film. Int. J. Mater. Struct. Integr. 4(1), 25–34 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    R.C.-C. Wang, M.-C. Hsieh, T.-M. Lee, Effects of nanometric roughness on surface properties and fibroblast’s initial cytocompatibilities of Ti6AI4V. Biointerphases. 6, 87–97 (2011). https://doi.org/10.1116/1.3604528

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    M. Nikravesh, G.H. Akbari, A. Poladi, A comprehensive study on the surface tribology of Ta thin film using molecular dynamics simulation: the effect of TaN interlayer, power and temperature. Tribol. Int. 105, 185–192 (2017). https://doi.org/10.1016/j.triboint.2016.10.010

    CAS  Article  Google Scholar 

  28. 28.

    T.W. Chung, D.Z. Liu, S.Y. Wang, S.S. Wang, Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 24, 4655–4661 (2003). https://doi.org/10.1016/S0142-9612(03)00361-2

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    T.P. Kunzler, T. Drobek, M. Schuler, N.D. Spencer, Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 28, 2175–2182 (2007). https://doi.org/10.1016/j.biomaterials.2007.01.019

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    P. Yang, Wettability and biocompatibility of nitrogen-doped hydrogenated amorphous carbon films: effect of nitrogen. Nucl. Instrum. Methods Phys. Res. Sect. B 242(2006), 22–25 (2006). https://doi.org/10.1016/j.nimb.2005.08.081

    CAS  Article  Google Scholar 

  31. 31.

    D. Bhattacharyya, H. Xu, R.R. Deshmukh, R.B. Timmons, K.T. Nguyen, Surface chemistry and polymer film thickness effects on endothelial cell adhesion and proliferation. J. Biomed. Mater. Res., Part A 94, 640–648 (2010). https://doi.org/10.1002/jbm.a.32713

    CAS  Article  Google Scholar 

  32. 32.

    H. Rafi-Kheiri, O. Kakuee, M. Lamehi-Rachti, Differential cross section measurement of the natO(d, d0) reaction at energies and angles relevant to EBS. Nucl. Instrum. Methods Phys. Res. Sect. B 373, 40–43 (2016). https://doi.org/10.1016/j.nimb.2016.02.058

    CAS  Article  Google Scholar 

  33. 33.

    M. Mayer (1999) SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, in AIP Conference Proceedings, pp. 541–544

  34. 34.

    O.V. Penkov, M. Kheradmandfard, M. Khadem, M. Kharaziha, R. Mirzaamiri, K.J. Seo, D.E. Kim, Ion-beam irradiation of DLC-based nanocomposite: creation of a highly biocompatible surface. Appl. Surf. Sci. 469, 896–903 (2019). https://doi.org/10.1016/j.apsusc.2018.11.109

    CAS  Article  Google Scholar 

  35. 35.

    L.H. Yu, T. Huang, J.H. Xu, Microstructure, mechanical and tribological properties of TaCN composite films. Surf. Eng. 33, 1–6 (2017). https://doi.org/10.1179/1743294414Y.0000000317

    CAS  Article  Google Scholar 

  36. 36.

    M. Alishahi, F. Mahboubi, S.M.M. Khoie, M. Aparicio, E. Lopez-Elvira, J. Méndez, R. Gago, Structural properties and corrosion resistance of tantalum nitride coatings produced by reactive DC magnetron sputtering. RSC Adv. 6, 89061–89072 (2016). https://doi.org/10.1039/c6ra17869c

    CAS  Article  Google Scholar 

  37. 37.

    N. Arshi, J. Lu, Y. Kon, C. Gyu, L. Jae, H. Yoon, F. Ahmed, Influence of nitrogen gas flow rate on the structural, morphological and electrical properties of sputtered TiN films. J. Mater. Sci. 1, 1194–1202 (2013). https://doi.org/10.1007/s10854-012-0905-4

    CAS  Article  Google Scholar 

  38. 38.

    M.L. Addonizio, A. Castaldo, A. Antonaia, E. Gambale, L. Iemmo, M.L. Addonizio, A. Castaldo, A. Antonaia, E. Gambale, L. Iemmo, Influence of process parameters on properties of reactively sputtered tungsten nitride thin films. J. Vac. Sci. Technol., A 1, 031506 (2014). https://doi.org/10.1116/1.3698399

    CAS  Article  Google Scholar 

  39. 39.

    S.I. Aoqui, H. Miyata, T. Ohshima, T. Ikegami, K. Ebihara, Preparation of boron carbide thin film by pulsed KrF excimer laser deposition process. Thin Solid Films 407, 126–131 (2002). https://doi.org/10.1016/S0040-6090(02)00025-1

    CAS  Article  Google Scholar 

  40. 40.

    S. Zhou, L. Liu, L. Ma, Y. Wang, Z. Liu, Influence of CH4 flow rate on microstructure and properties of Ti-C: H films deposited by DC reactive magnetron sputtering. Tribol. Trans. 60, 852–860 (2017). https://doi.org/10.1080/10402004.2016.1223387

    CAS  Article  Google Scholar 

  41. 41.

    A. Anders, A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 518, 4087–4090 (2010). https://doi.org/10.1016/j.tsf.2009.10.145

    CAS  Article  Google Scholar 

  42. 42.

    H. Wang, S. Zhang, Y. Li, D. Sun, Bias effect on microstructure and mechanical properties of magnetron sputtered nanocrystalline titanium carbide thin films. Thin Solid Films 516, 5419–5423 (2008). https://doi.org/10.1016/j.tsf.2007.07.022

    CAS  Article  Google Scholar 

  43. 43.

    P.B. Barna, M. Adamik, Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 317, 27–33 (1998). https://doi.org/10.1016/S0040-6090(97)00503-8

    CAS  Article  Google Scholar 

  44. 44.

    B. Ramezanzadeh, A. Ahmadi, M. Mahdavian, Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Eval. Program Plan. 1, 2–3 (2016). https://doi.org/10.1016/j.corsci.2016.04.004

    CAS  Article  Google Scholar 

  45. 45.

    F. Rupp, R.A. Gittens, L. Scheideler, A. Marmur, B.D. Boyan, Z. Schwartz, J. Geis-Gerstorfer, A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater. 10, 2894–2906 (2014). https://doi.org/10.1016/j.actbio.2014.02.040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    P. Xiao, B. Derby, Wetting of titanium nitride and titanium carbide by liquid metals. Acta Mater. 44, 307–314 (1996)

    CAS  Article  Google Scholar 

  47. 47.

    Y. Zhou, B. Wang, X. Song, E. Li, G. Li, S. Zhao, H. Yan, Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity. Appl. Surf. Sci. 253, 2690–2694 (2006). https://doi.org/10.1016/j.apsusc.2006.05.118

    CAS  Article  Google Scholar 

  48. 48.

    R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936). https://doi.org/10.1021/ie50320a024

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge Mr. Reza Tima from Amirkabir University of Technology (Tehran Polytechnic) and Dr.Maryam Parnian from Tehran University of Medical Science for their constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. R. Mohammadian Semnani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poladi, A., Mohammadian Semnani, H.R., Emadoddin, E. et al. Wettability and Biocompatibility of TaCx Films Deposited on AISI316L Stainless Steel: Effect of Methane Concentration. J Inorg Organomet Polym 30, 349–358 (2020). https://doi.org/10.1007/s10904-019-01193-1

Download citation

Keywords

  • TaC film
  • Wettability
  • Biocompatibility
  • Magnetron sputtering
  • Stainless steel