Skip to main content
Log in

Structural, Thermal, Magnetic and Electrical Properties of Polyaniline/CoFe2O4 Nano-composites with Special Reference to the Dye Removal Capability

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

CoFe2O4 nanoparticles were synthesized using environmentally friend sucrose auto-combustion method. PANI/CoFe2O4 nano-composites were prepared via in situ polymerization of aniline in the presence of various ferrite ratios. The structure, thermal, and electro-magnetic properties of the nano-composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), thermo-gravimetric analysis (TG), vibrating sample magnetometer (VSM), ac-conductivity and dielectric measurements. The structural properties exhibited the existence of the two phases and indicated core–shell structure. This core–shell was confirmed further through thermal and electrical properties measurements. The different PANI properties such as thermal stability, magnetic and the dielectric were obviously improved by ferrite incorporation whereas its conductivity remained unaffected. The nano-composites (10 and 30%) were investigated for the efficient removal of acid red dye (AR) from wastewater. In this category, the effect of various parameters including pH, contact time, temperature and mass on the removal capacity were investigated. The adsorption kinetics indicated that the adsorption followed the pseudo-second-order equation model through spontaneous endothermic adsorption process. The incorporation of ferrite within PANI increases the magnetic sensitivity of the nano-composite, which will facilitate the ease of separation of dispersed nano-composite from aqueous solutions using simple magnet after dye removing process. Generally, the moderate magnetic sensitivity, cost effective synthesis besides the acceptable obtained adsorption capability of the entire nano-composites could enhance their future use in the remediation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Jin, M. Zhong, F. Wang, Y. Dong, Z. Lei, Q. Wang, B. Su, Enhanced magnetic and electrochemical properties of one-step synthesized PANI-Fe3O4 composite nanomaterial by a novel green solvothermal method. J. Alloys Compds. 695, 1807–1812 (2017)

    CAS  Google Scholar 

  2. M. Khairy, Polyaniline–Zn0.2Mn0.8Fe2O4, ferrite core–shell composite: preparation, characterization and properties. J. Alloys Compd. 608, 283–291 (2014)

    CAS  Google Scholar 

  3. C.D. Pina, A.M. Ferretti, A. Ponti, E. Falletta, A green approach to magnetically-hard electrically-conducting polyaniline/CoFe2O4 nanocomposites. Compos. Sci. Technol. 110, 138–144 (2015)

    Google Scholar 

  4. P. Chitra, A. Muthusamy, S. Dineshkumar, Temperature and frequency dependence on electrical properties of polyaniline/Ni(1-x)CoxFe2O4 nanocomposites. J. Magn. Magn. Mater. 384, 204–212 (2015)

    CAS  Google Scholar 

  5. V. Divya, M.V. Sangaranarayanan, A facile synthetic strategy for mesoporous crystalline copper–polyaniline composite. Eur. Polym. J. 48, 560–568 (2012)

    CAS  Google Scholar 

  6. C.V. Tuan, M.A. Tuan, N.V. Hieu, T. Trung, Electrochemical synthesis of polyaniline nanowires on Pt interdigitated microelectrode for room temperature NH3 gas sensor application. Curr. Appl. Phys. 12, 1011–1018 (2012)

    Google Scholar 

  7. Q. Tan, Y. Xu, J. Yang, L. Qiu, Y. Chen, X. Chen, Preparation and electrochemical properties of the ternary nanocomposite of polyaniline/activated carbon/TiO2 nanowires for supercapacitors. Electrochim. Acta 88, 526–529 (2013)

    CAS  Google Scholar 

  8. M. Tumma, R. Srivastava, Transition metal nanoparticles supported on mesoporous polyaniline catalyzed reduction of nitroaromatics. Catal. Commun. 37, 64–68 (2013)

    CAS  Google Scholar 

  9. N. Dong, M. Zhong, P. Fei, Z. Lei, B. Su, Magnetic and electrochemical properties of PANI-CoFe2O4 nanocomposites synthesized via a novel one-step solvothermal method. J. Alloys Compds. 660, 382–386 (2016)

    CAS  Google Scholar 

  10. A.P. Alivisator, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Google Scholar 

  11. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    CAS  PubMed  Google Scholar 

  12. J. Smith, H.P.J. Wijn, Ferrites (Philips Technical Library, Eindhovan, 1959)

    Google Scholar 

  13. A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar, Combustion synthesis of cobalt ferrite nanoparticles-Influence of fuel to oxidizer ratio. J. Alloys Compds 514, 91–96 (2012)

    CAS  Google Scholar 

  14. K. Rana, P. Thakur, P. Sharma, M. Tomar, V. Guptab, A. Thakur, Improved structural and magnetic properties of cobalt nanoferrites: influence of sintering temperature. Ceram. Int. 41, 4492–4497 (2015)

    CAS  Google Scholar 

  15. M.A. Gabal, R.M. El-Shishtawy, Y.M. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324, 2258–2264 (2012)

    CAS  Google Scholar 

  16. Y.I. Kim, D. Kim, C.S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Physica B 337, 42–51 (2003)

    CAS  Google Scholar 

  17. J. Jiang, L. Li, M. Zhu, Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization. React. Funct. Polym. 68, 57–62 (2008)

    CAS  Google Scholar 

  18. G. Li, S. Yan, E. Zhou, Y. Chen, Preparation of magnetic and conductive NiZn ferrite-polyaniline nanocomposites with core-shell structure. Colloids Surf. A: Physicochem. Eng. Aspects 276, 40–44 (2006)

    CAS  Google Scholar 

  19. O. Yavuz, M.K. Ram, M. Aldissi, P. Poddar, S. Hariharan, Synthesis and the physical properties of MnZn ferrite and NiMnZn ferrite–polyaniline nanocomposite particles. J. Mater. Chem. 15, 810–817 (2005)

    CAS  Google Scholar 

  20. L. Li, C.H. Xiang, X. Liang, B. Hao, Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole: Preparation and electromagnetic properties. Synth. Met. 160, 28–34 (2010)

    CAS  Google Scholar 

  21. J. Jiang, L. Li, F. Xu, Polyaniline–LiNi ferrite core–shell composite: preparation, characterization and properties. Mater. Sci. Eng., A 456, 300–304 (2007)

    Google Scholar 

  22. J. Jiang, L.-H. Ai, D.-B. Qin, H. Liu, L.-C. Li, Preparation and characterization of electromagnetic functionalized polyaniline/BaFe12O19 composites. Synth. Met. 159, 695–699 (2009)

    CAS  Google Scholar 

  23. N. Gandhil, K. Singh, A. Ohlan, D.P. Singh, S.K. Dhawan, Thermal, dielectric and microwave absorption properties of polyaniline–CoFe2O4 nanocomposites. Compos. Sci. Technol. 71, 1754–1760 (2011)

    Google Scholar 

  24. E.E. Tanrıverdi, A.T. Uzumcu, H. Kavas, A. Demir, A. Baykal, Conductivity Study of Polyaniline-Cobalt Ferrite (PANI-CoFe2O4) Nanocomposite. Nano-Micro Lett. 3, 99–107 (2011)

    Google Scholar 

  25. J.A. Khan, M. Qasim, B.R. Singh, S. Singh, M. Shoeb, W. Khan, D. Das, A.H. Naqvi, Synthesis and characterization of structural, optical, thermal and dielectric properties of polyaniline/CoFe2O4 nanocomposites with special reference to photocatalytic activity. Spectrochim. Acta Part A 109, 313–321 (2013)

    CAS  Google Scholar 

  26. P. Antonel, F.M. Berho, G. Jorge, F.V. Molina, Magnetic composites of CoFe2O4 nanoparticles in a poly (aniline) matrix: Enhancement of remanence ratio and coercivity. Synth. Met. 199, 292–302 (2015)

    CAS  Google Scholar 

  27. M.A. Gabal, A.A. Al-Juaid, S.M. Al-Rashed, M.A. Hussein, F. Al-Marzouki, Synthesis, characterization and electromagnetic properties of Zn-substituted CoFe2O4 via sucrose assisted combustion route. J. Magn. Magn. Mater. 426, 670–679 (2017)

    CAS  Google Scholar 

  28. M.A. Gabal, A.A. Al-Juaid, S. El-Rashed, M.A. Hussein, Synthesis and characterization of nano-sized CoFe2O4 via facile methods: a comparative study. Mater. Res. Bull. 89, 68–78 (2017)

    CAS  Google Scholar 

  29. M.A. Gabal, M. Hussein, A. Hermas, Synthesis, characterization and electrical conductivity of polyaniline-Mn0.8Zn0.2Fe2O4 nano-composites. Int. J. Electrochem. Sci 11, 4526–4538 (2016)

    CAS  Google Scholar 

  30. M. AbdelSalam, Coating carbon nanotubes with crystalline manganese dioxide nanoparticles and their application for lead ions removal from model and real water. Colloids Surf. A419, 69–79 (2013)

    Google Scholar 

  31. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955)

    CAS  Google Scholar 

  32. S. Sultana, M.Z. Rafiuddin, K. Khan, Umar, Synthesis and characterization of copper ferrite nanoparticles doped polyaniline. J. Alloys Compds. 535, 44–49 (2012)

    CAS  Google Scholar 

  33. L. Li, J. Jiang, F. Xu, Synthesis and ferrimagnetic properties of novel Sm-substituted LiNi ferrite–polyaniline nanocomposite. Mater. Lett. 61, 1091–1096 (2007)

    CAS  Google Scholar 

  34. H. Sozeri, U. Kurtan, R. Topkaya, A. Baykal, M.S. Toprak, Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite: synthesis, characterization and magnetic properties evaluation. Ceram. Int. 39, 5137–5143 (2013)

    CAS  Google Scholar 

  35. A. Gok, B. Sari, M. Talu, Synthesis and characterization of conducting substituted polyanilines. Synth. Met. 142, 41–48 (2004)

    CAS  Google Scholar 

  36. M. Khairy, Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth. Met. 189, 34–41 (2014)

    CAS  Google Scholar 

  37. M. Caizer, Stefanescu, magnetic characterization of nanocrystalline Ni–Zn ferrite powder prepared by the glyoxylate precursor method. J. Phys. D 35, 3035–3040 (2002)

    CAS  Google Scholar 

  38. A.A. Farghali, M. Moussa, M.H. Khedr, Synthesis and characterization of novel conductive and magnetic nano-composites. J. Alloys Compds. 499, 98–103 (2010)

    CAS  Google Scholar 

  39. K.R. Reddy, K.-P. Lee, A.I. Gopalan, H.-D. Kang, Organosilane modified magnetite nanoparticles/poly (aniline-co-o/m-aminobenzenesulfonic acid) composites: synthesis and characterization. React. Funct. Polym. 67, 943–954 (2007)

    CAS  Google Scholar 

  40. L. Zhang, W. Jiao, J. He, A. Zhang, Synthesis of PAA/NiFe2O4 composite nanoparticles and the effect of microstructure on magnetism. J. Alloys Compds. 577, 538–542 (2013)

    CAS  Google Scholar 

  41. M.A. Gabal, A.A. Al-Juaid, S. El-Rashed, M.A. Hussein, Y.M. Al Angari, Polyaniline/Co0.6Zn0.4Fe2O4 core-shell nano-composites. Synthesis, characterization and properties. J. Alloys Compd. 747, 83–90 (2018)

    CAS  Google Scholar 

  42. H. Deligoz, A. Baykal, E.E. Tanrıverdi, Z. Durmus, M.S. Toprak, Synthesis, structural and electrical properties of triethylene glycol (TREG) stabilized Mn0.2Co0.8Fe2O4 NPs. Mater. Res. Bull. 47, 537–543 (2012)

    CAS  Google Scholar 

  43. M.B. Mohamed, K. EL-Sayed, Structural, magnetic and dielectric properties of (PANI)–Ni0.5Zn0.5Fe1.5Cr0.5O4 nanocomposite. Composites Part B 56, 270–278 (2014)

    CAS  Google Scholar 

  44. X. Yuan, L. Cheng, Y. Zhang, S. Guo, L. Zhang, Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation. Mater. Des. 92, 563–570 (2016)

    CAS  Google Scholar 

  45. M. Bhaumik, R. McCrindle, A. Maity, Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole–polyaniline nanofibres. Chem. Eng. J. 228, 506–515 (2013)

    CAS  Google Scholar 

  46. M.A. Gabal, E.A. Al-Harthy, Y.M. Al Angari, M. Abdel Salam, MWCNTs decorated with Mn0.8Zn0.2Fe2O4 nanoparticles for removal of crystal-violet dye from aqueous solutions. Chem. Eng. J. 255, 156–164 (2014)

    CAS  Google Scholar 

  47. S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1–39 (1898)

    Google Scholar 

  48. W. Rudzinski, W. Plazinski, On the applicability of the pseudo-second order equation to represent the kinetics of adsorption at solid/solution interfaces: a theoretical analysis based on the statistical rate theory. Adsorption 15, 181–192 (2009)

    CAS  Google Scholar 

  49. H.M. Al-Saidi, M.A. Abdel-Fadeel, A.Z. El-Sonbati, A.A. El-Bindary, Multi-walled carbon nanotubes as an adsorbent material for the solid phase extraction of bismuth from aqueous media: kinetic and thermodynamic studies and analytical applications. J. Mol. Liq. 216, 693–698 (2016)

    CAS  Google Scholar 

  50. S. Karagoz, T. Tay, S. Ucar, M. Erdem, Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour. Technol. 99, 6214–6222 (2008)

    PubMed  Google Scholar 

  51. L. Vlaev, S. Turmanova, A. Dimitrova, Kinetics and thermodynamics of water adsorption onto rice husks ash filled polypropene composites during soaking. J. Polym. Res. 16, 151–164 (2009)

    CAS  Google Scholar 

  52. W. Konicki, I. Petech, E. Mijowaska, I. Jasinska, Adsorption kinetics of acid dye acid red 88 onto magnetic multi-walled carbon nanotubes Fe3C nanocomposite. Clean-Soil Air Water 42, 284–294 (2014)

    CAS  Google Scholar 

  53. A.H. Aydin, O. Yavuz, Removal of acid red 183 from aqueous solution using clay and activated carbon. Ind. J. Chem. Technol. 11, 89–94 (2014)

    Google Scholar 

  54. D. Xu, C. Gu, X. Chen, Adsorption and removal of acid red 3R from aqueous solution using flocculent humic acid isolated from lignite. Procedia Environ. Sci. 18, 127–134 (2013)

    CAS  Google Scholar 

  55. X. Yang, B. Al-Duri, Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J. Colloid Interface Sci. 287, 25–34 (2005)

    CAS  PubMed  Google Scholar 

  56. A.K. Kumar, S.V. Mohan, P.N. Sarma, Sorptive removal of endocrine-disruptive compound (estriol, E3) from aqueous phase by batch and column studies: kinetic and mechanistic evaluation. J. Hazard. Mater. 164, 820–828 (2009)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gabal.

Ethics declarations

Conflicts of interest

The corresponding author (M.A. Gabal) stated that the absence of any grant or fund. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabal, M.A., Al-Juaid, A.A., El-Rashed, S. et al. Structural, Thermal, Magnetic and Electrical Properties of Polyaniline/CoFe2O4 Nano-composites with Special Reference to the Dye Removal Capability. J Inorg Organomet Polym 29, 2197–2213 (2019). https://doi.org/10.1007/s10904-019-01179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01179-z

Keywords

Navigation