Skip to main content

Advertisement

Log in

Polyaniline/Cu(II) Metal-organic Frameworks Composite for High Performance Supercapacitor Electrode

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The specific capacitance of supercapacitors can be benefited by the porosity of the metal-organic frameworks (MOFs). In this study, a nanocomposite of polyaniline-Cu(II) MOFs (PANI/Cu-MOF) was fabricated by a two-step process including chemical polymerization of aniline and room temperature synthesis of Cu–MOFs in the presence of the as-prepared polyaniline. The obtained compounds were characterized by FT-IR, PXRD, SEM, EDAX mapping, and XPS techniques. PXRD patterns revealed the amorphous character of the nanocomposite. FT-IR and EDS-mapping demonstrate the formation of PANI/Cu–MOF nanocomposite. SEM was applied for studying the PANI/Cu-MOF morphology. As demonstrated by CV (cyclic voltammetry), GCD (galvanostatic charge/discharge), and EIS (electrochemical impedance spectroscopy), PANI/Cu-MOF composite shows better capacitive properties compared to the pure Cu-MOF. Furthermore, the results of CVs indicate that the PANI/Cu-MOF composite has a higher capacitance (734 F g−1 at 5 mV s−1) with good electrochemical cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

    Google Scholar 

  2. T. Brousse, D. Bélanger, J.W. Long, J. Electrochem. Soc. 162, A5185–A5189 (2015)

    CAS  Google Scholar 

  3. P. Simon, Y. Gogotsi, Nanoscience And Technology: A Collection of Reviews from Nature Journals (World Scientific, Singapore, 2010), pp. 320–329

    Google Scholar 

  4. H. Wang, J. Lin, Z.X. Shen, J. Sci. 1, 225–255 (2016)

    Google Scholar 

  5. T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Nano Lett. 14, 2522–2527 (2014)

    CAS  PubMed  Google Scholar 

  6. C. Zhu, Y. He, Y. Liu, N. Kazantseva, P. Saha, Q. Cheng, J. Energy Chem. 35, 124–131 (2019)

    Google Scholar 

  7. Z. Yang, A. Qiu, J. Ma, M. Chen, Compos. Sci. Technol. 156, 231–237 (2018)

    CAS  Google Scholar 

  8. A. Xie, F. Tao, T. Li, L. Wang, S. Chen, S. Luo, C. Yao, Electrochim. Acta 261, 314–322 (2018)

    CAS  Google Scholar 

  9. M.S. Rahmanifar, H. Hesari, A. Noori, M.Y. Masoomi, A. Morsali, M.F. Mousavi, Electrochim. Acta 275, 76–86 (2018)

    CAS  Google Scholar 

  10. Y. Huang, J. Zhou, N. Gao, Z. Yin, H. Zhou, X. Yang, Y. Kuang, Electrochim. Acta 269, 649–656 (2018)

    CAS  Google Scholar 

  11. H. Gao, X. Wang, G. Wang, C. Hao, S. Zhou, C. Huang, Nanoscale 10, 10190–10202 (2018)

    CAS  PubMed  Google Scholar 

  12. J. Li, C. Hao, S. Zhou, C. Huang, X. Wang, Electrochim. Acta 283, 467–477 (2018)

    CAS  Google Scholar 

  13. M.G. Campbell, M. Dincă, Sensors 17, 1108 (2017)

    Google Scholar 

  14. M. Chowdhury, Metal-organic-frameworks for biomedical applications in drug delivery, and as MRI contrast agents. J. Biomed. Mater. Res., Part A 105, 1184–1194 (2017)

    CAS  Google Scholar 

  15. S. Gonen, L. Elbaz, Data Br. 19, 281–287 (2018)

    Google Scholar 

  16. Z. Zhang, H.T.H. Nguyen, S.A. Miller, A.M. Ploskonka, J.B. DeCoste, S.M. Cohen, J. Am. Chem. Soc. 138, 920–925 (2016)

    CAS  PubMed  Google Scholar 

  17. Y. Zhang, S. Yuan, X. Feng, H. Li, J. Zhou, B. Wang, J. Am. Chem. Soc. 138, 5785–5788 (2016)

    CAS  PubMed  Google Scholar 

  18. L. Shao, Q. Wang, Z. Ma, Z. Ji, X. Wang, D. Song, Y. Liu, N. Wang, J. Power Sources 379, 350–361 (2018)

    CAS  Google Scholar 

  19. C.R. Rawool, S.P. Karna, A.K. Srivastava, Electrochim. Acta 294, 345–356 (2019)

    CAS  Google Scholar 

  20. Y.Y. Kannangara, U.A. Rathnayake, J.-K. Song, Electrochim. Acta 297, 145–154 (2019)

    CAS  Google Scholar 

  21. L. He, J. Liu, L. Yang, Y. Song, M. Wang, D. Peng, Z. Zhang, S. Fang, Electrochim. Acta 275, 133–144 (2018)

    CAS  Google Scholar 

  22. S. Zhou, C. Hao, J. Wang, X. Wang, H. Gao, Chem. Eng. J. 351, 74–84 (2018)

    CAS  Google Scholar 

  23. S. Zhou, Z. Ye, S. Hu, C. Hao, X. Wang, C. Huang, F. Wu, Nanoscale 10, 15771–15781 (2018)

    CAS  PubMed  Google Scholar 

  24. S. Loera-Serna, M.A. Oliver-Tolentino, M. de Lourdes López-Núñez, A. Santana-Cruz, A. Guzmán-Vargas, R. Cabrera-Sierra, H.I. Beltrán, J. Flores, J. Alloys Compd. 540, 113–120 (2012)

    CAS  Google Scholar 

  25. Y. Li, J. Miao, X. Sun, J. Xiao, Y. Li, H. Wang, Q. Xia, Z. Li, Chem. Eng. J. 298, 191–197 (2016)

    CAS  Google Scholar 

  26. M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Sens. Actuators, B 230, 9–16 (2016)

    CAS  Google Scholar 

  27. S. Giri, D. Ghosh, C.K. Das, Adv. Funct. Mater. 24, 1312–1324 (2014)

    CAS  Google Scholar 

  28. Y.D.H. Zhang, H. Zhang, W. Wang, Q. Huang, Y. Chen, L. Pu, Int. J. Electrochem. Sci. 11, 6279–6286 (2016)

    CAS  Google Scholar 

  29. S. Bouson, A. Krittayavathananon, N. Phattharasupakun, P. Siwayaprahm, M. Sawangphruk, R. Soc. Open Sci. 4, 170654 (2017)

    PubMed  PubMed Central  Google Scholar 

  30. S. Guo, Y. Zhu, Y. Yan, Y. Min, J. Fan, Q. Xu, H. Yun, J. Power Sources 316, 176–182 (2016)

    CAS  Google Scholar 

  31. S. Hu, J. Yan, X. Huang, L. Guo, Z. Lin, F. Luo, B. Qiu, K.-Y. Wong, G. Chen, Sens. Actuators, B 267, 312–319 (2018)

    CAS  Google Scholar 

  32. J. Wei, Y. Hu, Y. Liang, B. Kong, Z. Zheng, J. Zhang, S.P. Jiang, Y. Zhao, H. Wang, J. Mater. Chem. A 5, 10182–10189 (2017)

    CAS  Google Scholar 

  33. X. Liang, F. Zhang, W. Feng, X. Zou, C. Zhao, H. Na, C. Liu, F. Sun, G. Zhu, Chem. Sci. 4, 983–992 (2013)

    CAS  Google Scholar 

  34. A.K. Kar, R. Srivastava, New J. Chem. 42, 9557–9567 (2018)

    CAS  Google Scholar 

  35. R. Wu, X. Qian, F. Yu, H. Liu, K. Zhou, J. Wei, Y. Huang, J. Mater. Chem. A 1, 11126–11129 (2013)

    CAS  Google Scholar 

  36. I.W. Ock, J.W. Choi, H.M. Jeong, J.K. Kang, Adv. Energy Mater. 8, 1702895 (2018)

    Google Scholar 

  37. W. Xu, J. Lu, W. Huo, J. Li, X. Wang, C. Zhang, X. Gu, C. Hu, Nanoscale 10, 14304–14313 (2018)

    CAS  PubMed  Google Scholar 

  38. V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.-J. Kim, Electrochim. Acta 275, 110–118 (2018)

    CAS  Google Scholar 

  39. B. Chen, Y. Wang, C. Li, L. Fu, X. Liu, Y. Zhu, L. Zhang, Y. Wu, RSC Adv. 7, 25019–25024 (2017)

    CAS  Google Scholar 

  40. Z. Shao, H. Li, M. Li, C. Li, C. Qu, B. Yang, Energy 87, 578–585 (2015)

    CAS  Google Scholar 

  41. J.N. Lekitima, K.I. Ozoemena, C.J. Jafta, N. Kobayashi, Y. Song, D. Tong, S. Chen, M. Oyama, J. Mater. Chem. A 1, 2821–2826 (2013)

    CAS  Google Scholar 

  42. H. Gao, F. Wu, X. Wang, C. Hao, C. Ge, Int. J. Hydrog. Energy 43, 18349–18362 (2018)

    CAS  Google Scholar 

  43. S. Selvam, B. Balamuralitharan, S.N. Karthick, A.D. Savariraj, K.V. Hemalatha, S.-K. Kim, H.-J. Kim, J. Mater. Chem. A 3, 10225–10232 (2015)

    CAS  Google Scholar 

  44. L. Mao, H.S.O. Chan, J. Wu, RSC Adv. 2, 10610–10617 (2012)

    CAS  Google Scholar 

  45. M.G. Hosseini, E. Shahryari, R. Najjar, I. Ahadzadeh, Int. J. Nanosci. Nanotechnol. 11, 147–157 (2015)

    Google Scholar 

  46. Z. Hu, L. Zu, Y. Jiang, H. Lian, Y. Liu, Z. Li, F. Chen, X. Wang, X. Cui, Polymers 7, 1491 (2015)

    Google Scholar 

  47. N.M. Das, D. Roy, N. Clarke, V. Ganesan, P.S. Gupta, RSC Adv. 4, 32490–32503 (2014)

    CAS  Google Scholar 

  48. M. Ramadan, A.M. Abdellah, S.G. Mohamed, N.K. Allam, Sci. Rep. 8, 7988 (2018)

    PubMed  PubMed Central  Google Scholar 

  49. N. Song, Y. Wu, W. Wang, D. Xiao, H. Tan, Y. Zhao, Mater. Res. Bull. 111, 267–276 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Shahid Chamran University of Ahvaz (Grant No. 1396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Ansari-Asl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neisi, Z., Ansari-Asl, Z. & Dezfuli, A.S. Polyaniline/Cu(II) Metal-organic Frameworks Composite for High Performance Supercapacitor Electrode. J Inorg Organomet Polym 29, 1838–1847 (2019). https://doi.org/10.1007/s10904-019-01145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01145-9

Keywords

Navigation