Advertisement

Structural, Optical and Electrical Studies on Hybrid Material of In Situ Formed Silver sulfide in Polymer Blend Matrix

  • Shruti S. Devangamath
  • Blaise LoboEmail author
Article
  • 13 Downloads

Abstract

Organic–inorganic polymer hybrid films were prepared, using polyvinyl alcohol–polyethylene glycol blend as the organic host matrix. Silver sulfide (Ag2S) semiconductor particles have been synthesized in polymer blend matrix, by in-situ method. Polymer hybrid films, with various amounts of Ag2S were prepared and characterized structurally, optically and electronically by using various characterization techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–Vis absorption spectroscopy, temperature and time dependent DC electrical studies. Hydrogen bonding interactions take place between hydroxyl groups (OH) and carbonyl groups (C=O) of polymer blend molecules with Ag+ ion of Ag2S filler, indicating complex formation between polymer matrix and filler, which is confirmed by FTIR technique. XRD results showed presence of additional multiple peaks (compared to pure blend film) corresponding to αʹ-Ag2S monoclinic crystal system. Changes in degree of crystallinity (%C) are observed for hybrid films with various amounts of Ag2S, showing a highest value of 18.2% for the film containing 0.372 g of Ag2S, when compared to 13.45% (%C) for pure blend film. Uniform distribution of Ag2S nanoparticles in polymer blend matrix is revealed by SEM analysis for hybrid film containing 0.372 g of Ag2S. UV–Vis absorption studies showed multiple absorption peaks due to added filler. Highest value of room temperature conductivity of 9.40 × 10−7 S/cm was obtained for the hybrid film containing 0.372 g of Ag2S. Values of transference numbers (tion and tele) in time dependent electrical studies indicated that the electrical conductivity in pure blend film as well as hybrid films is mainly due to ions.

Keywords

Polymer Hybrid material PVA PEG Silver sulfide Characterization 

Notes

Acknowledgements

The authors are thankful to University Science Instrumentation Centre (USIC), Karnatak University, Dharwad, for providing facilities to carry out FTIR, UV–Visible characterization and acquire the data. We are also thankful to Innovation center, MIT, Manipal for recording XRD data and SAIF-STIC, Cochin University, Kerala, for providing SEM images. The first author acknowledges financial assistance in the form of fellowship, BCWD, Government of Karnataka, India.

References

  1. 1.
    K. Akamatsu, S. Takei, M. Mizuhata, A. Kajinami, S. Deki, S. Takeoka, M. Fujii, S. Hayashi, K. Yamamoto, Thin Solid Films 359, 55 (2000)Google Scholar
  2. 2.
    G.A.M. -Castanon, M.G.S. -Loredo, H.J. Dorantes, J.R. M.-Mendoza, G.O. Zarzosa, F. Ruiz, Mater. Lett. 59, 529 (2005)Google Scholar
  3. 3.
    A.B. Gordienko, Yu.N. Zhuravlev, D.G. Fedorov, Russ. Phys. J. 49(8), 893 (2006)Google Scholar
  4. 4.
    D. Karashanova, K. Starbova, N. Starbov, J. Optoelectron. Adv. Mater. 5(4), 903 (2003)Google Scholar
  5. 5.
    P.N. Joshi, Res. Rev. 5(1), 3 (2016)Google Scholar
  6. 6.
    H.M. -Maghraoui, M. Dachraoui, S. Belgacem, K.D. Buhre, R. Kunst, P. Cowache, D. Lincot, Thin Solid Films 288, 217 (1996)Google Scholar
  7. 7.
    R. Liu, Materials 7, 2747 (2014)Google Scholar
  8. 8.
    S. HaiZhu, Y. Bai, Sci. China Ser E-Technol. Sci. 51(11), 1886 (2008)Google Scholar
  9. 9.
    S.Y. Yeo, W.L. Tan, M. Abu Bakar, J. Ismail, Polym. Degrad. Stab. 95(8), 1299 (2010)Google Scholar
  10. 10.
    A.M. Magerramov, M.A. Ramazanov, S.G. Nuriyeva, F.V. Hajiyeva, U.A. Hasanova, J. Optoelectron. Biomed. Mater. 7(2), 39 (2015)Google Scholar
  11. 11.
    X.F. Qian, J. Yin, S. Feng, S.H. Liu, Z.K. Zhu, J. Mater. Chem. 11, 2504 (2001)Google Scholar
  12. 12.
    B. Yeole, T. Sen, D. Hansora, S. Mishra, Am. J. Sens. Technol. 4(1), 10 (2017)Google Scholar
  13. 13.
    R. Vijaya Kumar, O. Palchik, Yu Koltypin, Y. Diamant, A. Gedanken, Ultrason. Sonochem. 9, 65 (2002)Google Scholar
  14. 14.
    S.B. Aziz, M.A. Rasheed, A.M. Hussein, H.M. Ahmed, Mater. Sci. Semicond. Process. 71, 197 (2017)Google Scholar
  15. 15.
    K. Kannan, L. Guru Prasad, S. Agilan, N. Muthukumarasamy, Optik 170, 10 (2018)Google Scholar
  16. 16.
    A. Saini, J. Sharma, R. Rozra, S. Dhiman, P.K. Aggarwal, Sharma, J. Appl. Polym. Sci. 132(34), 42464 (2015) 1–8)Google Scholar
  17. 17.
    O.G. Abdullah, D.A. Tahir, K. Kadir, J. Mater. Sci.: Mater. Electron. 26(9), 6939 (2015)Google Scholar
  18. 18.
    A. Tawab, M.M. Magida, S.M. Ibrahim, Effect J. Polym. Environ. 19, 440 (2011)Google Scholar
  19. 19.
    R.F. Bhajantri, V. Ravichandrachary, A. Harisha, V. Crasta, S.P. Nayak, B. Poojary, Polymer 47, 3591 (2006)Google Scholar
  20. 20.
    Bokobza, Polymers 10(7), 1 (2018)Google Scholar
  21. 21.
    C.O. Dinc, A. Guner, Bulg. Chem. Commun. 49, 15 (2017)Google Scholar
  22. 22.
    S.M. Korbag, Saleh, Int. J. Environ. Stud. 73(2), 226 (2016)Google Scholar
  23. 23.
    W. Cho, J.H. So, Mater. Lett. 60, 2653 (2006)Google Scholar
  24. 24.
    R. Zamiri, H.A. Ahangar, A. Zakaria, G. Zamiri, M. Shabani, B. Singh, J.M.F. Ferreira, Chem. Cent. J. (2015).  https://doi.org/10.1186/s13065-015-0099-y Google Scholar
  25. 25.
    X.D. Ma, X.F. Qian, J. Yin, Z.K. Zhu, J. Mater. Chem. 12, 663 (2002)Google Scholar
  26. 26.
    P. Patil, N.J. Gaikwad, Braz. J. Pharm. Sci. 47(1), 161 (2011)Google Scholar
  27. 27.
    S.K. Nagaraj, S. Shivanna, N.K. Subramani, H. Siddaramaiah, Res. Rev. 4(4), 1 (2016)Google Scholar
  28. 28.
    S. Kashida, N. Watanabe, T. Hasegava, H. Iida, M. Mori, S. Savrasov, Solid State Ionics 158, 167 (2003)Google Scholar
  29. 29.
    R. Sadanaga, S. Sueno, Miner. J. 5(2), 124 (1967)Google Scholar
  30. 30.
    B.M. Baraker, B. Lobo, Mapana J. Sci. 16(1), 45 (2017)Google Scholar
  31. 31.
    E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, M.A. Morsi, J. Mater. Res. Technol. 7(4), 419 (2018)Google Scholar
  32. 32.
    E. Segerman, P.G. Stern, Nature 210, 1258 (1966)Google Scholar
  33. 33.
    T.R. Rao, I. Omkaram, B. Sumalatha, K.V. Brahmam, C. L. Raju, Ionics 18, 695 (2012)Google Scholar
  34. 34.
    R. Chen, N.T. Nuhfer, L. Moussa, H.R. Morris, P.M. Whitmore, Nanotechnology 19(11), 455604 (2008)Google Scholar
  35. 35.
    F. Mott, E. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Oxford University Press, New York, 1971), pp. 273–284Google Scholar
  36. 36.
    T. Ramesan, K. Surya, J. Appl. Polym. Sci. 133(22), 43496 (2016) 1–8)Google Scholar
  37. 37.
    M.T. Jayakrishnan, Ramesan, J. Inorg. Organomet. Polym. 27(1), 323 (2017)Google Scholar
  38. 38.
    P.B. Hammannavar, B. Lobo, IOSR-J. Appl. Phys. 9(6), 13 (2017)Google Scholar
  39. 39.
    T.G. Schaaff, A.J. Rodinone, J. Phys. Chem. B 107, 10416 (2003)Google Scholar
  40. 40.
    M.S.L. Velzquez, R. Irizarry, M.E.C. Rosario, J. Phys. Chem. C 114, 5839 (2010)Google Scholar
  41. 41.
    M. Watanabe, K. Sanui, N. Ogata, F. Inoue, T. Kobayashi, Z. Ohtaki, Polymer J. 16(9), 711 (1984)Google Scholar
  42. 42.
    S. Miyatani, J. Phys. Soc. Japan. 10(9), 786 (1955)Google Scholar
  43. 43.
    M.H. Hebb, J. Chem. Phys. 20(1), 185 (1952)Google Scholar
  44. 44.
    C. Wagner, 7th Meeting of the International Committee of electrochemical Thermodynamics and Kinetics (Butterworths, London, 1956)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsKarnatak University’s Karnatak Science CollegeDharwadIndia

Personalised recommendations