Ammonium Perchlorate Encapsulated with TiO2 Nanocomposite for Catalyzed Combustion Reactions

Abstract

Ammonium perchlorate (APC) is the most common oxidizer for highly energetic systems. The initial decomposition of APC is an endothermic process. This behavior withstands high activation energy and could render high burning rate. We report on the sustainable fabrication of TiO2 nanoparticles; a novel catalyzing agent for APC. Mono-dispersed TiO2 particles of 10 nm particle size were fabricated using hydrothermal processing. XRD diffractogram demonstrated highly crystalline structure. The synthesized colloidal TiO2 particles were effectively integrated into APC particles via co-precipitation technique. The impact of TiO2 particles (1 wt%) on APC thermal behavior was investigated using DSC and TGA. APC demonstrated an initial endothermic decomposition (with absorption heat of 102.5 J/g) at 242 °C, and two subsequent exothermic decomposition stages at 297.8 and 452.8 °C respectively. TiO2 offered a decrease in APC early endothermic decomposition by 80%. The two main exothermic decomposition stages were merged into one single stage with an increase in total heat release by 18%. These novel features could inherit titanium oxide particles unique catalyzing ability for advanced highly energetic systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    S. Jain et al., Size and shape of ammonium perchlorate and their influence on properties of composite propellant. Defence Science Journal 59, 294 (2009)

    Article  Google Scholar 

  2. 2.

    Kumari et al., Nano-ammonium perchlorate: preparation, characterization, and evaluation in composite propellant formulation. J. Energ. Mater. 31, 192–202 (2013)

    CAS  Article  Google Scholar 

  3. 3.

    G.P. Li et al., The preparation and properties of AP-based nano-limit growth energetic materials. Adv. Mater. Res. 924, 105–109 (2014)

    CAS  Google Scholar 

  4. 4.

    M. Zou et al., Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate. J. Hazard. Mater. 225, 124–130 (2012)

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    J.A. Conkling, C. Mocella, Chemistry of Pyrotechnics: Basic Principles and Theory (CRC Press, Boca Raton, 2010)

    Google Scholar 

  6. 6.

    G.P. Sutton, O. Biblarz, Rocket Propulsion Elements (Wiley, New York, 2001)

    Google Scholar 

  7. 7.

    N. Kubota, Propellants and Explosives: Thermochemical Aspects of Combustion (Wiley, Weinheim, 2015)

    Google Scholar 

  8. 8.

    R.A. Chandru et al., Exceptional activity of mesoporous β-MnO2 in the catalytic thermal sensitization of ammonium perchlorate. J. Mater. Chem. 22, 6536–6538 (2012)

    CAS  Google Scholar 

  9. 9.

    S. Chaturvedi, P.N. Dave, Nano-metal oxide: potential catalyst on thermal decomposition of ammonium perchlorate. J. Exp. Nanosci. 7, 205–231 (2012)

    CAS  Google Scholar 

  10. 10.

    M.J. Turner, Rocket and spacecraft propulsion: principles, practice and new developments (Springer, Berlin, 2008)

    Google Scholar 

  11. 11.

    N.R. Council, Advanced Energetic Materials (National Academies Press, Washington, DC, 2004)

    Google Scholar 

  12. 12.

    S.G. Hosseini et al., Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 37, 72–79 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    S. Wang et al., An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips. Nanotechnology 23, 435701 (2012)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. 14.

    P.R. Patil et al., Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide. Propellants Explos. Pyrotech. vol 31, 442–446 (2006)

    CAS  Article  Google Scholar 

  15. 15.

    S.-M. Shen et al., The thermal decomposition of ammonium perchlorate (AP) containing a burning-rate modifier. Thermochim. Acta 223, 135–143 (1993)

    CAS  Article  Google Scholar 

  16. 16.

    Nema et al., Mechanistic aspect of thermal decomposition and burn rate of binder and oxidiser of AP/HTPB composite propellants comprising HYASIS-CAT. Int. J. Plastics Technol. 8, 344–354 (2004)

    CAS  Google Scholar 

  17. 17.

    L. Liu et al., Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propellants Explos. Pyrotech. 29, 34–38 (2004)

    Article  CAS  Google Scholar 

  18. 18.

    R. Rastogi et al., Burning rate catalysts for composite solid propellants. Combust. Flame 30, 117–124 (1977)

    CAS  Article  Google Scholar 

  19. 19.

    N. Li et al., Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon 54, 124–132, 2013

    CAS  Article  Google Scholar 

  20. 20.

    S.R. Chakravarthy et al., Mechanism of burning rate enhancement of composite solid propellants by ferric oxide. J. Propuls. Power 13, 471–480 (1997)

    CAS  Article  Google Scholar 

  21. 21.

    W. Pang et al., Effects of different nano-sized metal oxide catalysts on the properties of composite solid propellants. Combust. Sci. Technol. 188, 315–328 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    P.W.M. Jacobs, H. Whitehead, Decomposition and combustion of ammonium perchlorate. Chem. Rev. 69, 551–590 (1969)

    CAS  Article  Google Scholar 

  23. 23.

    T. Daou et al., Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 18, 4399–4404 (2006)

    CAS  Article  Google Scholar 

  24. 24.

    X. Wang, Y. Li, Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880–2881 (2002)

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Cabanas, M. Poliakoff, The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem. 11, 1408–1416 (2001)

    CAS  Article  Google Scholar 

  26. 26.

    J.W. Lee et al., A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158–1164 (2012)

    CAS  Article  Google Scholar 

  27. 27.

    J. Li, Engineering nanoparticles in near-critical and supercritical water, PhD, University of Nottingham, Nottingham, 2008

  28. 28.

    M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: past, present and future. J. Mater. Sci. 43, 2085–2103 (2008)

    CAS  Article  Google Scholar 

  29. 29.

    K. Byrappa, M. Yoshimura (eds.), Handbook of Hydrothermal Technology (William Andrew, Norwich, 2001)

    Google Scholar 

  30. 30.

    P. Savage et al., Reactions at supercritical conditions: applications and fundamentals. Am. Inst. Chem. Eng. (AIChE) J. 41, 1723–1778 (1995)

    CAS  Article  Google Scholar 

  31. 31.

    K.S. Morley et al., Clean preparation on nanoparticulate metals in porous supports: a supercritical route. J. Chem. Mater. 12, 1898–1905 (2002)

    CAS  Article  Google Scholar 

  32. 32.

    H. Hobbs, Biocatalysis in ‘green solvents, PhD, Chemistry, University of Nottingham, Notttingham, 2006

  33. 33.

    J.A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 99, 495–541 (1999)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    T. Adschiri et al., Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res. 39, 4901–4907 (2000)

    CAS  Article  Google Scholar 

  35. 35.

    T. Adschiri et al., Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. Am. Ceram. Soc. 75, 2615–2618 (1992)

    CAS  Article  Google Scholar 

  36. 36.

    S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    CAS  Article  Google Scholar 

  37. 37.

    S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)

    CAS  Article  Google Scholar 

  38. 38.

    S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent, Particuology, 22, 66–71 (2015)

    CAS  Article  Google Scholar 

  39. 39.

    S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    S. Elbasuney, Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 305, 538–545 (2017)

    CAS  Article  Google Scholar 

  41. 41.

    S. Elbasuney, Novel colloidal molybdenum hydrogen bronze (MHB) for instant detection and neutralization of hazardous peroxides. TrAC Trends Anal. Chem. 102, 272–279 (2018)

    CAS  Article  Google Scholar 

  42. 42.

    S. Elbasuney, Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems. J. Inorg. Organomet. Polym. Mater. 28, 1793–1800 (2018)

    CAS  Article  Google Scholar 

  43. 43.

    S. Elbasuney et al., Infrared signature of novel super-thermite (Fe2O3/Mg) fluorocarbon nanocomposite for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28, 1718–1727 (2018)

    CAS  Article  Google Scholar 

  44. 44.

    S. Elbasuney et al., Super-thermite (Al/Fe2O3) fluorocarbon nanocomposite with stimulated infrared thermal signature via extended primary combustion zones for effective countermeasures of infrared seekers. J. Inorgan. Organomet. Polym. Mater. 28, 2231–2240 (2018)

    CAS  Article  Google Scholar 

  45. 45.

    S. Elbasuney, H.E. Mostafa, “Synthesis and surface modification of nanophosphorous-based flame retardant agent by continuous flow hydrothermal synthesis. Particuology 22, 82–88 (2015)

    CAS  Article  Google Scholar 

  46. 46.

    S. Elbasuney, S.F. Mostafa, Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher. Powder Technol. 278, 72–83 (2015)

    CAS  Article  Google Scholar 

  47. 47.

    T. Tillotson et al., Sol–gel processing of energetic materials. J. Non-Cryst. Solids 225, 358–363 (1998)

    CAS  Article  Google Scholar 

  48. 48.

    M. Mahinroosta, Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decomposition of ammonium perchlorate. J. Nanostruct. Chem. 3, 47 (2013)

    Article  Google Scholar 

  49. 49.

    V. Boldyrev, Thermal decomposition of ammonium perchlorate. Thermochim. Acta 443, 1–36 (2006)

    CAS  Article  Google Scholar 

  50. 50.

    L. Li et al., One step fabrication of Mn3O4/carbonated bacterial cellulose with excellent catalytic performance upon ammonium perchlorate decomposition. Mater. Res. Bull. 60, 802–807 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work has been conducted at Nanotechnology Center, Military Technical College, Cairo, Egypt.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sherif Elbasuney.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Yehia, M. Ammonium Perchlorate Encapsulated with TiO2 Nanocomposite for Catalyzed Combustion Reactions. J Inorg Organomet Polym 29, 1349–1357 (2019). https://doi.org/10.1007/s10904-019-01099-y

Download citation

Keywords

  • Ammonium perchlorate
  • Catalyst
  • Thermal behavior
  • Energetic systems
  • Catalyzed propellants