An Eco-friendly Synthesis of V2O5 Nanoparticles and Their Catalytic Activity for the Degradation of 4-Nitrophrnol

Abstract

Vanadium pentoxide (V2O5) nanoparticles were synthesized using green, facile and cheap method using cotton fibres employed as an effective catalytic degradation material for hazards chemical materials. The synthesized nanoparticles have been characterized by UV–visible spectroscopy (UV–Vis), infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD showed crystalline orthorhombic structure of V2O5. The TEM micrographs showed spherical shape in a nanoscale range had average distribution of the diameter equal to 19.21 nm and their standard deviation equal to 3.57 nm. The UV–Vis study showed absorption peaks at 234, 265, and 317 nm which confirmed the formation of V2O5 structure. The energy band gap was calculated using Tauc equation. The catalytic activity performance of as-prepared sample was studied for catalytic degradation 4-nitrophenol. The catalytic degradation study showed that the reaction was first order reaction as it has been concluded from the linear regression. The prepared samples showed that 4-nitrophenol is converted completely to 4-aminophenol within 18 min.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84 (2018)

    CAS  Article  Google Scholar 

  2. 2.

    A. Awad, A.I. Abou-Kandil, I. Elsabbagh, M. Elfass, M. Gaafar, E. Mwafy, Polymer nanocomposites Part 1: structural characterization of zinc oxide nanoparticles synthesized via novel calcination method. J. Thermoplast. Composite Mater. 28, 1343–1358 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    A.I. Abou-Kandil, A. Awad, E. Mwafy, Polymer nanocomposites part 2: optimization of zinc oxide/high-density polyethylene nanocomposite for ultraviolet radiation `shielding. J. Thermoplast. Composite Mater. 28, 1583–1598 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    K. Yamani, R. Berenguer, A. Benyoucef, E. Morallón, Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7347-z

    Article  Google Scholar 

  5. 5.

    F. Chouli, I. Radja, E. Morallon, A. Benyoucef, A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium (IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym. Composites 38, E254–E260 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    D. Li, C. Tong, W. Ji, Z. Fu, Z. Wan, Q. Huang et al., Vanadium oxide post-treatment for enhanced photovoltage of printable perovskite solar cells. ACS Sustain. Chem. Eng. 7(2), 2619–2625 (2018)

    Article  Google Scholar 

  7. 7.

    A.K. Prasad, S. Dhara, S. Dash, Selective NO2 sensor based on nanostructured vanadium oxide films. Sens. Lett. 15, 552–556 (2017)

    Article  Google Scholar 

  8. 8.

    C. Niu, M. Huang, P. Wang, J. Meng, X. Liu, X. Wang et al., Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 9, 128–138 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    R. Berenguer, M.O. Guerrero-Pérez, I. Guzmán, J. Rodriguez-Mirasol, T. Cordero, Synthesis of vanadium oxide nanofibers with variable crystallinity and V5+/V4+ ratios. ACS Omega 2, 7739–7745 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    Á Cunha, J. Martins, N. Rodrigues, F. Brito, Vanadium redox flow batteries: a technology review. Int. J. Energy Res. 39, 889–918 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    R.R. Langeslay, D.M. Kaphan, C.L. Marshall, P.C. Stair, A.P. Sattelberger, M. Delferro, Catalytic applications of vanadium: a mechanistic perspective. Chem. Rev. (2018). https://doi.org/10.1021/acs.chemrev.8b00245

    Article  PubMed  Google Scholar 

  12. 12.

    Y. Zhang, J. Zheng, Y. Zhao, T. Hu, Z. Gao, C. Meng, Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor. Appl. Surf. Sci. 377, 385–393 (2016)

    CAS  Article  Google Scholar 

  13. 13.

    W. Jin, B. Dong, W. Chen, C. Zhao, L. Mai, Y. Dai, Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes. Sens. Actuators B 145, 211–215 (2010)

    CAS  Article  Google Scholar 

  14. 14.

    T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li et al., Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547–2552 (2010)

    CAS  Article  Google Scholar 

  15. 15.

    B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng, Z. Shen et al., Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv. Mater. 21, 2436–2440 (2009)

    CAS  Article  Google Scholar 

  16. 16.

    Y. Wang, L. Pan, Y. Li, A. Gavrilyuk, Hydrogen photochromism in V2O5 layers prepared by the sol–gel technology. Appl. Surf. Sci. 314, 384–391 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    C. Ramana, O. Hussain, R. Pinto, C. Julien, Microstructural features of pulsed-laser deposited V2O5 thin films. Appl. Surf. Sci. 207, 135–138 (2003)

    CAS  Article  Google Scholar 

  18. 18.

    J. He, T. Kunitake, A. Nakao, Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 15, 4401–4406 (2003)

    CAS  Article  Google Scholar 

  19. 19.

    K. Hyde, H. Dong, J.P. Hinestroza, Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14, 615–623 (2007)

    CAS  Article  Google Scholar 

  20. 20.

    C. Zhu, J. Xue, J. He, Controlled in-situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials. J. Nanosci. Nanotechnol. 9, 3067–3074 (2009)

    CAS  Article  Google Scholar 

  21. 21.

    L.M. Liz-Marzán, Nanometals: formation and color. Mater. Today 7, 26–31 (2004)

    Article  Google Scholar 

  22. 22.

    A. Shokri, Degradation of 4-nitrophenol from industrial wastewater by nano catalytic ozonation. Int. J. Nano Dimens. 7, 160–167 (2016)

    CAS  Google Scholar 

  23. 23.

    R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51–59 (1999)

    CAS  Article  Google Scholar 

  24. 24.

    D. Tryk, A. Fujishima, K. Honda, Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim. Acta 45, 2363–2376 (2000)

    CAS  Article  Google Scholar 

  25. 25.

    B. Li, Y. Xu, G. Rong, M. Jing, Y. Xie, Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology 17, 2560 (2006)

    CAS  Article  Google Scholar 

  26. 26.

    A.T. Raj, K. Ramanujan, S. Thangavel, S. Gopalakrishan, N. Raghavan, G. Venugopal, Facile synthesis of vanadium-pentoxide nanoparticles and study on their electrochemical, photocatalytic properties. J. Nanosci. Nanotechnol. 15, 3802–3808 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    Z. Strassberger, E.V. Ramos-Fernandez, A. Boonstra, R. Jorna, S. Tanase, G. Rothenberg, Synthesis, characterization and testing of a new V2O5/Al2O3–MgO catalyst for butane dehydrogenation and limonene oxidation. Dalton Trans. 42, 5546–5553 (2013)

    CAS  Article  Google Scholar 

  28. 28.

    B. Anis, A. Mostafa, Z. El Sayed, A. Khalil, A. Abouelsayed, Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction. Opt. Laser Technol. 103, 367–372 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, Synthesis of cadmium oxide nanoparticles by pulsed laser ablation in liquid environment. Optik 144, 679–684 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    L. Fiermans, J. Vennik, Inelastic effects and structure in the auger electron emission spectra of V2O5 (010) and V (100) surfaces: Study of chemical shifts. Surf. Sci. 35, 42–62 (1973)

    CAS  Article  Google Scholar 

  31. 31.

    F. Ongul, Solution-processed inverted organic solar cell using V2O5 hole transport layer and vacuum free EGaIn anode. Opt. Mater. 50, 244–249 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    S. Aly, S. Mahmoud, N. El-Sayed, M. Kaid, Study on some optical properties of thermally evaporated V2O5 films. Vacuum 55, 159–163 (1999)

    CAS  Article  Google Scholar 

  33. 33.

    N. Hassan, M.K. Khalaf, The Influence of RF power, pressure and substrate temperature on optical properties of RF Sputtered vanadium pentoxide thin films. Iraqi J. Phys. 16, 42–47 (2018)

    Google Scholar 

  34. 34.

    A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, Au@ CdO core/shell nanoparticles synthesized by pulsed laser ablation in Au precursor solution. Appl. Phys. A 123, 774 (2017)

    Article  Google Scholar 

  35. 35.

    M.S. Hasanin, A.M. Mostafa, E.A. Mwafy, O.M. Darwesh, Eco-friendly cellulose nano fibers via first reported Egyptian Humicola fuscoatra Egyptia X4: Isolation and characterization. Environ. Nanotechnol. Monit. Manag. 10:409–418 (2018)

    Google Scholar 

  36. 36.

    R.-S. Chen, W.-C. Wang, C.-H. Chan, H.-P. Hsu, L.-C. Tien, Y.-J. Chen, Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition. Nanoscale Res Lett 8, 443 (2013)

    Article  Google Scholar 

  37. 37.

    L.R. Bhat, S. Vedantham, U.M. Krishnan, J.B.B. Rayappan, A non-enzymatic two step catalytic reduction of methylglyoxal by nanostructured V2O5 modified electrode. Biosens. Bioelectron. 103, 143–150 (2018)

    Article  Google Scholar 

  38. 38.

    S. Lv, J. Ding, H. Peng, G. Li, Facile synthesis of V2O5/TiO2 core–shell nanobelts. Transit. Met. Chem. 35, 809–813 (2010)

    CAS  Article  Google Scholar 

  39. 39.

    J. Ding, H. Peng, G. Li, K. Chen, Conversion of V2O5· xH2O into orthorhombic V2O5 single-crystalline nanobelts. Mater. Lett. 64, 1562–1565 (2010)

    CAS  Article  Google Scholar 

  40. 40.

    A.M. Darwish, W.H. Eisa, A.A. Shabaka, M.H. Talaat, Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment. Spectrochim. Acta Part A 153, 315–320 (2016)

    CAS  Article  Google Scholar 

  41. 41.

    H. El-Saied, A.M. Mostafa, M.S. Hasanin, E.A. Mwafy, A.A. Mohammed, Synthesis of antimicrobial cellulosic derivative and its catalytic activity. J King Saud Univ. Sci. (2018). https://doi.org/10.1016/j.jksus.2018.06.007

    Article  Google Scholar 

  42. 42.

    W. Hu, B. Liu, Q. Wang, Y. Liu, Y. Liu, P. Jing et al., A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications. Chem. Commun. 49, 7596–7598 (2013)

    CAS  Article  Google Scholar 

  43. 43.

    H. Gu, J. Wang, Y. Ji, Z. Wang, W. Chen, G. Xue, Facile and controllable fabrication of gold nanoparticles-immobilized hollow silica particles and their high catalytic activity. J. Mater. Chem. A 1, 12471–12477 (2013)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ayman M. Mostafa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alghool, S., Abd El-Halim, H.F. & Mostafa, A.M. An Eco-friendly Synthesis of V2O5 Nanoparticles and Their Catalytic Activity for the Degradation of 4-Nitrophrnol. J Inorg Organomet Polym 29, 1324–1330 (2019). https://doi.org/10.1007/s10904-019-01096-1

Download citation

Keywords

  • Vanadate
  • Nanomaterials
  • TEM
  • SEM
  • Nitrophenol