Hexagonal Core–Shell SiO2[–MOYI]Cl–]Ag Nanoframeworks for Efficient Photodegradation of the Environmental Pollutants and Pathogenic Bacteria


Hexagonal core–shell SiO2[–MOYI]Cl–]Ag nanoframeworks were synthesized via surface modification of hexagonal silica nanoparticles prepared from perlite (EP) as a cheap and abundant raw material. The prepared samples were well characterized by X-ray diffraction powder (XRD), energy dispersive X-ray (EDX), diffuse reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) specific surface area analysis, fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The XRD patterns confirmed that Ag and AgCl crystalline phases were successfully loaded on the surface. The TEM images were also implied that the nanoparticles have hexagonal shape with the average size of 50–80 nm. Photocatalytic properties were evaluated by degradation of acid blue 92 (AB92), two semivolatile organic compounds (SVOCs) i.e., 4-methoxy-2nitrophenol (4Mx2Np) and 3-methyl-4-nitrophenol (3M4Np), and Staphylococcus aureus (S. a) gram positive bacteria under visible light. The kinetics and mechanism of the photocatalytic pathways were also studied and the results were discussed. According to the obtained results, the photocatalyst was incredibly able to degradethe contaminants under visible light. Recycling experiments described the high capacity of the prepared sample for the repeated treatment of wastewaters.The TEM images of the treated bacterial cell walls after the reaction time were also used to clarify the antibacterial activity of the samples.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    CAS  PubMed  Google Scholar 

  2. 2.

    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nanophotocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    Q. Zhang, D.Q. Lima, I. Lee, F. Zaera, M. Chi, Y. Yin, A highly active titanium dioxide based visible light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. 123, 7226–7230 (2011)

    Article  Google Scholar 

  4. 4.

    D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 18, 2807–2824 (2006)

    CAS  Google Scholar 

  5. 5.

    A. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, E. Jabbari, Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Struct. Nano-Objects 14, 19–48 (2018)

    CAS  Article  Google Scholar 

  6. 6.

    K. Saravanan, K. Ananthanarayanan, P. Balaya, Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ. Sci. 3, 939–948 (2010)

    CAS  Article  Google Scholar 

  7. 7.

    S. Son, S.H. Hwang, C. Kim, J.Y. Yun, J. Jang, Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 4815–4820 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    M. Padervand, M.R. Elahifard, R.V. Meidanshahi, S. Ghasemi, S. Haghighi, M.R. Gholami, Investigation of the antibacterial and photocatalytic properties of the zeolitic nanosized AgBr/TiO2 composites. Mater. Sci. Semicond. Process. 15, 73–79 (2012)

    CAS  Article  Google Scholar 

  9. 9.

    Y. Li, P. Leung, L. Yao, Q. Song, E. Newton, Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 62, 58–63 (2006)

    CAS  Article  Google Scholar 

  10. 10.

    A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    CAS  Article  Google Scholar 

  11. 11.

    M. Padervand, M. Tasviri, M.R. Gholami, Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite. Chem. Pap. 65, 280–288 (2011)

    CAS  Article  Google Scholar 

  12. 12.

    E. Pakdel, W.A. Daoud, Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica. J. Colloid Interface Sci. 401, 1–7 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    R. Dong, B. Tian, C. Zeng, T. Li, T. Wang, J. Zhang, Ecofriendly synthesis and photocatalytic activity of uniform cubic Ag@AgCl plasmonic photocatalyst. J. Phys. Chem. C 117, 213–220 (2012)

    Article  Google Scholar 

  14. 14.

    G. Liu, L.-C. Yin, J. Wang, P. Niu, C. Zhen, Y. Xie, H.-M. Cheng, A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ. Sci. 5, 9603–9610 (2012)

    CAS  Article  Google Scholar 

  15. 15.

    D. Barpuzary, Z. Khan, N. Vinothkumar, M. De, M. Qureshi, Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation. J. Phys. Chem. C 116, 150–156 (2011)

    Article  Google Scholar 

  16. 16.

    W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, Q. Xu, Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. J. Mater. Chem. 22, 4050–4055 (2012)

    CAS  Article  Google Scholar 

  17. 17.

    S.H. Kang, W. Lee, H.S. Kim, Effects of CdS sensitization on single crystalline TiO2 nanorods in photoelectrochemical cells. Mater. Lett. 85, 74–76 (2012)

    CAS  Article  Google Scholar 

  18. 18.

    M. Padervand, Facile synthesis of the novel Ag [1-butyl 3-methyl imidazolium] Br nanospheres for efficient photodisinfection of wastewaters. Chem. Eng. Commun. 203, 1532–1537 (2016)

    Article  Google Scholar 

  19. 19.

    M. Padervand, Visible-light photoactive Ag–AgBr/α-Ag3VO4 nanostructures prepared in a water-soluble ionic liquid for degradation of wastewater. Appl. Nanosci. 6, 1119–1126 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    M. Padervand, Carboxymethyl cellulose-and fluorapatite-coated silver [orthophosphate-bromide] nanostructures for photodegradation of an azo dye from the textile industry. Kinet. Catal. 58, 493–498 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Tang, Z. Jiang, G. Xing, A. Li, P.D. Kanhere, Y. Zhang, T.C. Sum, S. Li, X. Chen, Z. Dong, Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon induced electron transfer processes. Adv. Func. Mater. 23, 2932–2940 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. J. Am. Chem. Soc. 129, 9552–9553 (2007)

    CAS  Article  Google Scholar 

  23. 23.

    M. Padervand, Well-supported Ag3VO4–AgBr nanostructures for visible light-driven treatment of wastewaters. Prog. React. Kinet. Mech. 42, 251–258 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    F. Zhang, S. Lu, P. Yang, C. Jia, K. Matras-Postolek, Synthesis of SiO2@ AgCl and SiO2@Ag3PO4 nanocomposites via replacing reaction in situ towards enhanced photocatalysis. J. Nanosci. Nanotechnol. 16, 9794–9799 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    X. Xu, M. Wang, Y. Pei, C. Ai, L. Yuan, SiO2@ Ag/AgCl: a low-cost and highly efficient plasmonic photocatalyst for degrading rhodamine B under visible light irradiation. RSC Adv. 4, 64747–64755 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    L. Lucattini, G. Poma, A. Covaci, J. de Boer, M. Lamoree, P. Leonards, A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere 201, 466–482 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    W.A. Buttemer, P.G. Story, K.J. Fildes, R.V. Baudinette, L.B. Astheimer, Fenitrothion, an organophosphate, affects running endurance but not aerobic capacity in fat-tailed dunnarts (Sminthopsis crassicaudata). Chemosphere 72, 1315–1320 (2008)

    CAS  Article  Google Scholar 

  28. 28.

    M. Kitulagodage, J. Isanhart, W.A. Buttemer, M.J. Hooper, L.B. Astheimer, Fipronil toxicity in northern bobwhite quail Colinus virginianus: reduced feeding behaviour and sulfone metabolite formation. Chemosphere 83, 524–530 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    S. Kumar, G. Kaushik, M.A. Dar, S. Nimesh, U.J. Lopez-Chuken, J.F. Villarreal-Chiu, Microbial degradation of organophosphate pesticides: a review. Pedosphere 28, 190–208 (2018)

    Article  Google Scholar 

  30. 30.

    B. Bhushan, S.K. Samanta, A. Chauhan, A.K. Chakraborti, R.K. Jain, Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem. Biophys. Res. Commun. 275, 129–133(2000)

    CAS  Article  Google Scholar 

  31. 31.

    G. Dingemans, C. Van Helvoirt, D. Pierreux, W. Keuning, W. Kessels, Plasma-assisted ALD for the conformal deposition of SiO2: process, material and electronic properties. J. Electrochem. Soc. 159, H277–H285 (2012)

    CAS  Article  Google Scholar 

  32. 32.

    A.M. Azzam, M.A. Shenashen, M.M. Selim, H. Yamaguchi, I.M. El-Sewify, S. Kawada, A.A. Alhamid, S.A. El-Safty, Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic (V) and chromium (VI) from aqueous solution. J. Phys. Chem. Solids 109, 78–88 (2017)

    CAS  Article  Google Scholar 

  33. 33.

    M.Y. Emran, M.A. Shenashen, A.A. Abdelwahab, M. Abdelmottaleb, S.A. El-Safty, Facile synthesis of microporous sulfur-doped carbon spheres as electrodes for ultrasensitive detection of ascorbic acid in food and pharmaceutical products. New J. Chem. 42, 5037–5044 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    N. Akhtar, M.Y. Emran, M.A. Shenashen, H. Khalifa, T. Osaka, A. Faheem, T. Homma, H. Kawarada, S.A. El-Safty, Fabrication of photo-electrochemical biosensors for ultrasensitive screening of mono-bioactive molecules: the effect of geometrical structures and crystal surfaces. J. Mater. Chem. B 5, 7985–7996 (2017)

    CAS  Article  Google Scholar 

  35. 35.

    M.Y. Emran, M. Mekawy, N. Akhtar, M.A. Shenashen, I.M. EL-Sewify, A. Faheem, S.A. El-Safty, Broccoli-shaped biosensor hierarchy for electrochemical screening of noradrenaline in living cells. Biosens. Bioelectron. 100, 122–131 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    S.A. El-Safty, M. Shenashen, M. Ismael, M. Khairy, M.R. Awual, Mesoporous aluminosilica sensors for the visual removal and detection of Pd (II) and Cu (II) ions. Microporous Mesoporous Mater. 166, 195–205 (2013)

    CAS  Article  Google Scholar 

  37. 37.

    M.A. Shenashen, N. Akhtar, M.M. Selim, W.M. Morsy, H. Yamaguchi, S. Kawada, A.A. Alhamid, N. Ohashi, I. Ichinose, A.S. Alamoudi, Effective, low-cost recovery of toxic arsenate anions from water by using hollow sphere geode traps. Chemistry 12, 1952–1964 (2017)

    CAS  Google Scholar 

  38. 38.

    M.A. Shenashen, S. Kawada, M.M. Selim, W.M. Morsy, H. Yamaguchi, A.A. Alhamid, N. Ohashi, I. Ichinose, S.A. El-Safty, Bushy sphere dendrites with husk-shaped branches axially spreading out from the core for photo-catalytic oxidation/remediation of toxins. Nanoscale 9, 7947–7959 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    C.-J. Chung, H.-I. Lin, C.-M. Chou, P.-Y. Hsieh, C.-H. Hsiao, Z.-Y. Shi, J.-L. He, Inactivation of Staphylococcus aureus and Escherichia coli under various light sources on photocatalytic titanium dioxide thin film. Surf. Coat. Technol. 203, 1081–1085 (2009)

    CAS  Article  Google Scholar 

Download references


This work has been supported by the Center for International Scientific Studies & Collaboration (CISSC).

Author information



Corresponding author

Correspondence to Mohsen Padervand.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Padervand, M., Asgarpour, F., Akbari, A. et al. Hexagonal Core–Shell SiO2[–MOYI]Cl–]Ag Nanoframeworks for Efficient Photodegradation of the Environmental Pollutants and Pathogenic Bacteria. J Inorg Organomet Polym 29, 1314–1323 (2019). https://doi.org/10.1007/s10904-019-01095-2

Download citation


  • Photocatalyst
  • Wastewater
  • SiO2
  • AgCl
  • Visible light