Effective Removal of Antibacterial Drugs from Aqueous Solutions Using Porous Metal–Organic Frameworks


Effective removal of antibacterial drugs attracts more and more attentions with the rapid development of pharmacy industry, while still facing large challenge in removal efficiency to date. Herein, porous MIL-101 and SO3H-MIL-101 were systematically studied for their adsorption performances toward two common antibacterial drugs, gemifioxacin mesylate (GEM) and moxifloxacin hydrochloride (MOX). It was found that SO3H-MIL-101 can exhibit high adsorption capacities of 528 mg g−1 and 447 mg g−1 for GEM and MOX at natural pH respectively, superior to those of MIL-101 and other common MOFs-based adsorbents. The adsorption kinetics study indicates that the adsorption onto SO3H-MIL-101 follows pseudo-second-order model. Furthermore, it was found that the adsorption capacity of SO3H-MIL-101 increased at pH range of 2.0–7.0 and decreased at pH range of 7.0–10.0. Further study indicates that the two MOFs can be easily regenerated even after four cycles. Mechanism analysis demonstrates that surface potentials of the MOFs play critical effects on the adsorption processes for the amphipathic drugs and the introduction of –SO3H groups can effectively regulate the adsorption performance of the MOF. This work may provide an effective approach to modify the adsorption behaviour of the MOFs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10


  1. 1.

    X. Zhao, Y. Wei, H. Zhao, Z. Gao, Y. Zhang, L. Zhi, Y. Wang, H. Huang, Functionalized metal-organic frameworks for effective removal of rocephin in aqueous solutions. J. Colloid Interface Sci. 514, 234–239 (2018)

    CAS  Article  Google Scholar 

  2. 2.

    S. Li, X. Zhang, Y. Huang, Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J. Hazard. Mater. 321, 711–719 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    J.L. Martinez, Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 157, 2893–2902 (2009)

    CAS  Article  Google Scholar 

  4. 4.

    B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li, H.-C. Zhou, Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 138, 6204–6216 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    M. Zaghdoudi, F. Fourcade, I. Soutrel, D. Floner, A. Amrane, H. Maghraoui-Meherzi, F. Geneste, Direct and indirect electrochemical reduction prior to a biological treatment for dimetridazole removal. J. Hazard. Mater. 335, 10–17 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    J. Zhou, M. Li, L. Luo, H. Gao, F. Zheng, Photodegradation of moxifloxacin hydrochloride solutions under visible light irradiation: identification of products and the effect of pH on their formation. AAPS. PharmSciTech. 19, 1182–1190 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    X.V. Doorslaer, P.M. Heynderickx, K. Demeestere, K. Devevere, H.V. Langenhove, J. Dewulf, TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin operational variables and scavenger study. Appl. Catal. B Environ. 111–112, 150–156 (2012)

    Article  Google Scholar 

  8. 8.

    X.V. Doorslaer, K. Demeestere, P.M. Heynderickx, H.V. Langenhove, J. Dewulf, UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Appl. Catal. B Environ. 101, 540–547 (2011)

    Article  Google Scholar 

  9. 9.

    H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013)

    Article  Google Scholar 

  10. 10.

    H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    X. Kong, H. Deng, F. Yan, J. Kim, J.A. Swisher, B. Smit, O.M. Yaghi, J.A. Reimer, Mapping of functional groups in metal–organic frameworks. Science 341, 882 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    P. Szuromi, Mesoporous metal–organic frameworks. Science 359, 172–173 (2018)

    Google Scholar 

  13. 13.

    C. Duan, J. Huo, F. Li, M. Yang, H. Xi, Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks by a versatile cooperative template strategy. J. Mater. Sci. 53, 16276–16287 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    X. Zhao, H. Zhao, W. Dai, Y. Wei, Y. Wang, Y. Zhang, L. Zhi, H. Huang, Z. Gao, A metal-organic framework with large 1-D channels and rich –OH sites for high-efficiency chloramphenicol removal from water. J. Colloid Interface Sci. 526, 28–34 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    Y. Han, H. Zheng, K. Liu, H. Wang, H. Huang, L.-H. Xie, L. Wang, J.-R. Li, In-situ ligand formation-driven preparation of a heterometallic metal-organic framework for highly selective separation of light hydrocarbons and efficient mercury adsorption. ACS Appl. Mater. Interfaces 8, 23331–23337 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    X.-Y. Xu, C. Chu, H. Fu, X.-D. Du, P. Wang, W. Zheng, C.-C. Wang, Light-responsive UiO-66-NH2/Ag3PO4 MOF-nanoparticle composites for the capture and release of sulfamethoxazole. Chem. Eng. J. 350C, 436–444 (2018)

    Article  Google Scholar 

  17. 17.

    Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun. 9, 187 (2018)

    Article  Google Scholar 

  18. 18.

    P.A. Kobielska, A.J. Howarth, O.K. Farha, S. Nayak, Metal-organic frameworks for heavy metal removal from water. Coordin. Chem. Rev. 358, 92–107 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    J.R. De Andrade, M.F. Oliveira, M.G.C. Da Silva, M.G.A. Vieira, Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind. Eng. Chem. Res. 57, 3103–3127 (2018)

    Article  Google Scholar 

  20. 20.

    M. Mon, R. Bruno, J. Ferrando-Soria, D. Armentano, E. Pardo, Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. J. Mater. Chem. A 6, 4912–4947 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    K.A. Cychosz, R. Ahmad, A.J. Matzger, Liquid phase separations by crystalline microporous coordination polymers. Chem. Sci. 1, 293–302 (2010)

    CAS  Article  Google Scholar 

  22. 22.

    X. Zhao, K. Wang, Z. Gao, H. Gao, Z. Xie, X. Du, H. Huang, Reversing the dye adsorption and separation performance of metal-organic frameworks via introduction of –SO3H groups. Ind. Eng. Chem. Res. 56, 4496–4501 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    M. Sarker, J.Y. Song, A.R. Jeong, K.S. Min, S.H. Jhung, Adsorptive removal of indole and quinoline from model fuel using adenine-grafted metal–organic framewors. J. Hazard. Mater. 344, 593–601 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    M.-X. Wu, Y.-W. Yang, Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017)

    Article  Google Scholar 

  25. 25.

    M. Zha, J. Liu, Y.-L. Wong, Z. Xu, Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions. J. Mater. Chem. A 3, 3928–3934 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    D. Feng, Y. Xia, Comparisons of glyphosate adsorption properties of different functional Cr-based metal-organic frameworks. J. Sep. Sci. 41, 732–739 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    Z. Hasan, N.A. Khan, S.H. Jhung, Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. J. Eng. Chem. 284, 1406–1413 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    E. Haque, V. Lo, A.I. Minett, A.T. Harris, T.L. Church, Dichotomous adsorption behaviour of dyes on an amino-functionalised metal–organic framework, amino-MIL-101(Al). J. Mater. Chem. A 2, 193–203 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    X.-P. Luo, S.-Y. Fu, Y.-M. Du, J.-Z. Guo, B. Li, Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101. Micropor. Mesopor. Mater. 237, 268–274 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040 (2005)

    Article  Google Scholar 

  31. 31.

    S. Bhattacharjee, C. Chena, W.S. Ahn, Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv. 4, 52500–52525 (2014)

    CAS  Article  Google Scholar 

  32. 32.

    C. Mao, R.A. Kudla, F. Zuo, X. Zhao, L.J. Mueller, X. Bu, P. Feng, Anion stripping as a general method to create cationic porous framework with mobile anions. J. Am. Chem. Soc. 136, 7579–7582 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    G. Akiyama, R. Matsuda, H. Sato, M. Takata, S. Kitagawa, Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Adv. Mater. 23, 3294–3297 (2011)

    CAS  Article  Google Scholar 

  34. 34.

    K. Munusamy, G. Sethia, D.V. Patil, S. Rallapalli, P.B. Somani, R.S. Bajaj, H.C.: Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): volumetric measurements and dynamic adsorption studies. Chem. Eng. J. 195–196, 359–368 (2012)

    Article  Google Scholar 

  35. 35.

    P.K. Prabhakaran, J. Deschamps, Doping activated carbon incorporated composite MIL-101 using lithium: impact on hydrogen uptake. J. Mater. Chem. A 3, 7014–7021 (2015)

    Article  Google Scholar 

  36. 36.

    W.-W. Jin, H.-J. Li, J.-Z. Zou, S.-Z. Zeng, Q.-D. Li, G.-Z. Xu, H.-C. Sheng, B.-B. Wang, Y.-H. Si, L. Yu, X.-R. Zeng, Conducting polymer-coated MIL-101/S composite with scale-like shell structure for improving Li–S batteries. RSC Adv. 8, 4786–4793 (2018)

    CAS  Article  Google Scholar 

  37. 37.

    P. Mao, B. Qi, Y. Liu, L. Zhao, Y. Jiao, Y. Zhang, Z. Jiang, Q. Li, J. Wang, S. Chen, Y. Yang, AgII doped MIL-101 and its adsorption of iodine with high speed in solution. J. Solid State Chem. 237, 274–283 (2016)

    CAS  Article  Google Scholar 

  38. 38.

    N.M. Mahmoodi, O. Masrouri, Cationic dye removal ability from multicomponent system by magnetic carbon nanotubes. J. Solut. Chem. 55, 1568–1583 (2015)

    Article  Google Scholar 

  39. 39.

    X. Zhao, D. Liu, H. Huang, W. Zhang, Q. Yang, C. Zhong, The stability and defluoridation performance of MOFs in fluoride solutions. Micropor. Mesopor. Mater. 185, 72–78 (2014)

    CAS  Article  Google Scholar 

Download references


This work was supported by Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology (Nos. 20162012 and 20182020), Natural Science Foundation of China (No. 21606007) and the Science and Technology Plans of Tianjin (Nos. 17PTSYJC00040 and 18PTSYJC00180).

Author information



Corresponding authors

Correspondence to Xudong Zhao or Zhuqing Gao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chai, F., Zhao, X., Gao, H. et al. Effective Removal of Antibacterial Drugs from Aqueous Solutions Using Porous Metal–Organic Frameworks. J Inorg Organomet Polym 29, 1305–1313 (2019). https://doi.org/10.1007/s10904-019-01094-3

Download citation


  • Metal–organic frameworks
  • Adsorptive removal
  • Antibacterial drugs
  • Electrostatic interaction