A Novel Ag2O/Fe–TiO2 Photocatalyst for CO2 Conversion into Methane Under Visible Light


Modified TiO2 based nanomaterials have attained significant interest because of their unique morphology and excellent optical and photocatalytic properties. In this research, a very novel and highly efficient Ag2O/Fe–TiO2 porous structure was developed by simple hydrothermal method. The structural and morphological properties of the photocatalysts were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface areas of the samples were measured by Brunauer–Emmett–Teller theory (BET). The chemical composition and optical properties were investigated using X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy. The optical absorption measurements show a clear red-shift in absorption edge of Fe–TiO2 after loading of Ag2O (Ag2O/Fe–TiO2 composite). Moreover, Ag2O varying ratio (0–15 at.%) has also enhanced the efficiency of Ag2O/Fe–TiO2 photocatalyst for CO2 conversion into methane under visible light illumination (λ ≥ 420 nm). The optimum ratio of Ag2O loading which exhibited maximum performance is 10 at.%. Moreover, the 10%Ag2O/Fe–TiO2 composite synthesized at 180 °C hydrothermal temperature showed an excellent increase in photocatalytic activity than other composites synthesized at 150 and 210 °C. This excellent performance of photocatalyst can be attributed to the highly porous petal-like structure of composite. Therefore, it is expected that the present study will be a good addition in literature for designing highly active photocatalytic materials for reduction of CO2 into useful hydrocarbons.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    A. Goeppert, M. Czaun, J.P. Jones, G.S. Prakash, G.A. Olah, Recycling of carbon dioxide to methanol and derived products–closing the loop. Chem. Soc. Rev. 43(23), 7995–8048 (2014)

    CAS  Article  Google Scholar 

  2. 2.

    M. Mikkelsen, M. Jørgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3(1), 43–81 (2010)

    CAS  Article  Google Scholar 

  3. 3.

    J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl. Surf. Sci. 392, 658–686 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    H. Zhou, P. Li, J. Liu, Z. Chen, L. Liu, D. Dontsova et al., Biomimetic polymeric semiconductor-based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. Nano Energy 25, 128–135 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    P.Y. Liou, S.C. Chen, J.C. Wu, D. Liu, S. Mackintosh, M. Maroto-Valer, R. Linforth, Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ. Sci. 4(4), 1487–1494 (2011)

    CAS  Article  Google Scholar 

  6. 6.

    A. Iwase, S. Yoshino, T. Takayama, Y.H. Ng, R. Amal, A. Kudo, Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator. J. Am. Chem. Soc. 138(32), 10260–10264 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277(5698), 637–638 (1979)

    CAS  Article  Google Scholar 

  8. 8.

    G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148(3–4), 191–205 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J. Electroanal. Chem. 396(1–2), 21–26 (1995)

    Article  Google Scholar 

  10. 10.

    I.H. Tseng, W.C. Chang, J.C. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B 37(1), 37–48 (2002)

    CAS  Article  Google Scholar 

  11. 11.

    I.H. Tseng, J.C.S. Wu, Chemical states of metal-loaded titania in the photoreduction of CO2. Catal. Today 97(2–3), 113–119 (2004)

    CAS  Article  Google Scholar 

  12. 12.

    M. Ni, M.K. Leung, D.Y. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007)

    CAS  Article  Google Scholar 

  13. 13.

    S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011)

    CAS  Article  Google Scholar 

  14. 14.

    X. Yang, C. Salzmann, H. Shi, H. Wang, M.L. Green, T. Xiao, The role of photoinduced defects in TiO2 and its effects on hydrogen evolution from aqueous methanol solution. J. Phys. Chem. A 112(43), 10784–10789 (2008)

    CAS  Article  Google Scholar 

  15. 15.

    L. Zhu, H. Ma, H. Han, Y. Fu, C. Ma, Yu. Z., & X. Dong, Black TiO2 nanotube arrays fabricated by electrochemical self-doping and their photoelectrochemical performance. RSC Adv. 8(8), 18992–19000 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    C. Fan, C. Chen, J. Wang, X. Fu, Z. Ren, G. Qian, Z. Wang, Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci. Rep. 5(5), 11712 (2015)

    Article  Google Scholar 

  17. 17.

    X. Jiang, Y. Zhang, Y. Jiang, Rong, Y. Wang, Y. Wu, J., & C. Pang, Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J. Phys. Chem. C 116(42), 22619–22624 (2012)

    CAS  Article  Google Scholar 

  18. 18.

    W. Wang, Y. Ni, C. Lu, Z. Xu, Hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytic activity. RSC Adv. 2(22), 8286–8288 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    S.H.I. Lei, W.E.N.G. Duan, Highly active mixed-phase TiO2 photocatalysts fabricated at low temperature and the correlation between phase composition and photocatalytic activity. J. Environ. Sci. 20(10), 1263–1267 (2008)

    Article  Google Scholar 

  20. 20.

    Y. Zhang, H. Gan, G. Zhang, A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chem. Eng. J. 172(2–3), 936–943 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    X. Yang, F. Ma, K. Li, Y. Guo, J. Hu, W. Li et al., Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation. J. Hazard. Mater. 175(1–3), 429–438 (2010)

    CAS  PubMed  Google Scholar 

  22. 22.

    F. Chen, W. Zou, W. Qu, J. Zhang, Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process. Catal. Commun. 10(11), 1510–1513 (2009)

    CAS  Article  Google Scholar 

  23. 23.

    D. Wang, L. Xiao, Q. Luo, X. Li, J. An, Y. Duan, Highly efficient visible light TiO2 photocatalyst prepared by sol–gel method at temperatures lower than 300 °C. J. Hazard. Mater. 192(1), 150–159 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    T. Harifi, M. Montazer, Fe3+: Ag/TiO2 nanocomposite: synthesis, characterization and photocatalytic activity under UV and visible light irradiation. Appl. Catal. A 473, 104–115 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    M. Zhang, C. Chen, W. Ma, J. Zhao, Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. Angew. Chem. Int. Ed. 47(50), 9730–9733 (2008)

    CAS  Article  Google Scholar 

  26. 26.

    G. Li, L. Wu, F. Li, P. Xu, D. Zhang, H. Li, Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale 5(5), 2118–2125 (2013)

    CAS  Article  Google Scholar 

  27. 27.

    J. Su, L. Zhu, P. Geng, G. Chen, Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: an efficient heterojunction for pollutants degradation under solar light. J. Hazard. Mater. 316, 159–168 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    J. Gou, Q. Ma, X. Deng, Y. Cui, H. Zhang, X. Cheng et al., Fabrication of Ag2O/TiO2-Zeolite composite and its enhanced solar light photocatalytic performance and mechanism for degradation of norfloxacin. Chem. Eng. J. 308, 818–826 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    S.B. Yang, D.B. Xu, B.Y. Chen, B.F. Luo, X. Yan, L.S. Xiao, W.D. Shi, Synthesis and visible-light-driven photocatalytic activity of p-n heterojunction Ag2O/NaTaO3 nanotubes. Appl. Surf. Sci. 383, 214–221 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    H. Chu, X. Liu, J. Liu, J. Li, T. Wu, H. Li et al., Synergetic effect of Ag2O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO2. Mater. Sci. Eng. B 211, 128–134 (2016)

    CAS  Article  Google Scholar 

  31. 31.

    X. Wang, S. Li, H. Yu, J. Yu, S. Liu, Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity. Chem. A Eur. J. 17(28), 7777–7780 (2011)

    CAS  Article  Google Scholar 

  32. 32.

    H. Yu, W. Chen, X. Wang, Y. Xu, J. Yu, Enhanced photocatalytic activity and photoinduced stability of Ag-based photocatalysts: the synergistic action of amorphous-Ti (IV) and Fe (III) cocatalysts. Appl. Catal. B 187, 163–170 (2016)

    CAS  Article  Google Scholar 

  33. 33.

    W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl. Mater. Interfaces 2(8), 2385–2392 (2010)

    CAS  Article  Google Scholar 

  34. 34.

    D. Sarkar, C.K. Ghosh, S. Mukherjee, K.K. Chattopadhyay, Three dimensional Ag2O/TiO2 type-II (p–n) nanohetero junctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces 5(2), 331–337 (2012)

    Article  Google Scholar 

  35. 35.

    N.R. Khalid, Z. Hong, E. Ahmed, Y. Zhang, H. Chan, M. Ahmad, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light. Appl. Surf. Sci. 258(15), 5827–5834 (2012)

    CAS  Article  Google Scholar 

  36. 36.

    Y. Wang, J. Yu, W. Xiao, Q. Li, Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production. J. Mater. Chem. A 2, 3847–3855 (2014)

    CAS  Article  Google Scholar 

  37. 37.

    K. Kowal, K. Wysocka-Król, M. Kopaczyńska, E. Dworniczek, R. Franiczek, M. Wawrzyńska et al., In situ photoexcitation of silver-doped titania nanopowders for activity against bacteria and yeasts. J. Colloid Interface Sci. 362(1), 50–57 (2011)

    CAS  Article  Google Scholar 

  38. 38.

    Y. Cong, M. Chen, T. Xu, Y. Zhang, Q. Wang, Tantalum and aluminum co-doped iron oxide as a robust photocatalyst for water oxidation. Appl. Catal. B 147, 733–740 (2014)

    CAS  Article  Google Scholar 

  39. 39.

    K. Kočí, K. Matějů, L. Obalová, S. Krejčíková, Z. Lacný, D. Plachá et al., Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B 96(3–4), 239–244 (2010)

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to N. R. Khalid or M. Ikram.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalid, N.R., Hussain, M.K., Murtaza, G. et al. A Novel Ag2O/Fe–TiO2 Photocatalyst for CO2 Conversion into Methane Under Visible Light. J Inorg Organomet Polym 29, 1288–1296 (2019). https://doi.org/10.1007/s10904-019-01092-5

Download citation


  • TiO2
  • Hydrothermal method
  • Photocatalysis
  • CO2 conversion
  • Methane formation